Overview
SR44 full-featured solid-state soft starters provide many advantages when used instead of electromechanical contactors to control 3-phase AC induction motors. The SR44 series soft starters are fully digital, and use thyristors in all three motor phases for controlled reduced voltage motor starting and stopping. SR44s have an Automatic Application Setup that fully configures the starter for a specific application with one entry. SR44s also have a built-in “Optimizing” mode that reduces energy costs when used on lightly loaded and oversized motors, and external bypass capability for efficient running at rated speed.

Features
• 9–30A @ 230–460VAC
• 115 or 230 VAC selectable control voltage
• Full three-phase motor control
• Fully programmable
• Easily and separately adjustable motor start and stop times
• External bypass capability for run
• Advanced energy-saving Optimizing Mode improves motor efficiency and power factor while delivering demanded torque at low rpm (as compared to across-the-line control); and prolongs motor life
• Can be connected ‘in-the-delta’, allowing use of a smaller Soft Starter
• Can be used for motor reversing (with external contactors)
• Suitable for a wide variety of motor loads
• Keypad: 6 buttons with 2-line, 32-character display
• Can be used with local or remote control
• Optional Modbus control
• Programmable I/O for remote control: 1 digital input; 2 relay outputs
• Fault record history of last 5 trips
• IP20, panel mount
• Two-year warranty

Advantages
Mechanical Advantages
• Smooth acceleration; reduced mechanical shock and starting stress
• Extend lifespan of mechanical drive train components
• Fluid couplings and some clutches can be eliminated
Electrical Advantages
• Reduced starting currents and spikes
• More motors or larger motors can be started from lower-capacity power sources
• Allows motors to be started more frequently
Economic Advantages
• Lower overall costs for new installations
• Reduced maintenance and replacement of mechanical drive train components
• Reduced starting current lowers demand charges
• Energy Optimizing mode reduces electrical power costs
• Automatic Application setup feature speeds installation by configuring the SR44 for a specific application with one setting.

Standards & Approvals
• CE
• REACH
• RoHS
• UL listed* (E333109)
 * Optional SR44-RS485 is not UL approved

Optional accessories
• Communication/Modbus card SR44-RS485

Applications
• General purpose applications where traditional across-the-line starting or wye-delta starting would typically be appropriate.
SR44 Series Full-Featured Soft Starters — Size 1 — 9A-30A*

<table>
<thead>
<tr>
<th>Model</th>
<th>SR44-9</th>
<th>SR44-16</th>
<th>SR44-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>$499.00</td>
<td>$499.00</td>
<td>$499.00</td>
</tr>
</tbody>
</table>

* Rated Current [class 10(B) trip] (A)

<table>
<thead>
<tr>
<th>Model</th>
<th>SR44-9</th>
<th>SR44-16</th>
<th>SR44-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>16</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Rated Operational Voltage
230–460 VAC (-15% +10%) @ 50–60 Hz (±2Hz); 3 phase; (usable on 208V systems down to 196V)

Motor Rating
Refer to selection table. Starters must be sized according to HP and starting class.

Impulse Withstand Voltage
4kV

Insulation Voltage Rating
690 VAC

Short Circuit Current Rating (type 1)
5 kA

Control Power Consumption
- 8VA
- 10 VA

Control Voltage Range
- 115 VAC (-15% +10%) or 230 VAC (-15% +10%); 1 phase

Control Fuse (external)
- 125 mA @ 115V, 63 mA @ 230V
- 200 mA @ 115V, 100 mA @ 230V

Control Input
- 12/24 VDC or 115/230 VAC

Control Relay Outputs
- (2) SPDT, 3A @ 230 VAC, AC11 (electro-magnet control)

Start Time Setting Range
- 1–255 seconds

Start Voltage Setting Range
- 10–60% [% of main power voltage]

Stop Time Setting Range
- 0–255 seconds

Ambient Operating Temperature
- 0–40 °C [32–104 °F] – Above 40 °C (104 °F) derate linearly by 2% of unit FLC per °C to a max derate of 40% @ 60 °C [140 °F]

Transportation & Storage Temperature
- -25–60 °C [-13–167 °F] NOT exceeding 24 hours
- -25–75 °C [-13–167 °F] NOT exceeding 24 hours

Humidity
- Max 85% non-condensing, not exceeding 50% @ 40 °C [104 °F]

Altitude
- 1000m [3281 ft]; Above 1000m [3281 ft] derate linearly by 1% of unit FLC per 100m to MAX 2000m [6562 ft]

Environmental Rating
- IP20

Shipping Weight
- 16 lb [7.3 kg]

Dimensions (HxWxD)
- 415 x 222 x 195 mm [16.3 x 8.74 x 7.68 in]

* Refer to Selection Table for deratings by application and overload trip class.
SR44 Series Full-Featured Soft Starters – Optional Accessories

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Name</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR44-RS485*</td>
<td>Communication Card *</td>
<td>$95.00</td>
<td>Can be used to establish RS-485 communication between an SR44 Soft Starter and most Modbus masters. A PLC or PC is required to demux the data returned from the SR44. (See the User Manual for details and PLC sample ladder programs.) Plugs directly onto the control board of an SR44. No external power needed. Has both RJ45 connections and screw-type terminal strip connections; can be used with CAT5 RJ45-terminated Ethernet cable, or with twisted pair shielded wiring. Max # of networked SR44s: 8. Max network length: 25m [82 ft] for RJ45 connections; 1200m [3937 ft] for RS-485 screw-terminal connections. Works with all SR44 Soft Starters. Includes: Circuit card, Remote/Local selector switch.</td>
</tr>
</tbody>
</table>

Communication cables for use with the SR44-RS485 communication card are available in our ZIPLink Wiring Solutions section:

- SR44-485HD15-CBL-2 for connection to certain PLCs;
- SR44-485RJ45-CBL-2 for connection to certain RS485 networks

SR44 Soft Starter Optional Accessories

SR44 Index Ratings (per IEC 60947-4-2)

<table>
<thead>
<tr>
<th>Model #</th>
<th>Ie (A)</th>
<th>Standard Operation AC-53a; X-Tx; F-S</th>
<th>Bypassed Operation AC-53b; X-Tx; OFF-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR44-9 to SR44-30</td>
<td>9 to 30</td>
<td>AC-53a: 5-4; 99-10</td>
<td>AC-53b: 5-4; 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC-53a: 3-35; 99-10</td>
<td>AC-53b: 3-35; 120</td>
</tr>
</tbody>
</table>

* Index ratings AC-53a and AC-53b are specified by IEC standard # 60947-4-2

IEC Index Ratings are comprised of Rated Operational Current (Ie), Utilization Category, Overload Current Profile (X-Tx), and Duty Cycle (F-S) or OFF-time.

Index Rating Example - Standard Operation (AC-53a Utilization Category per IEC 60947-4-2)

```
9 to 105 - AC-53a:
  - Duty Cycle (F-S)
    - 99-10 = 99% duty cycle - 10 cycles/hr
  - Overload Current Profile (X-Tx)
    - 3-35 = 3 times rated current (Ie) for 35s
  - Utilization Category
    - AC-53a = controller semiconductors provide squirrel-cage motor Start, Run, and Stop control

9 to 105 = controllers with Rated Operational Currents from 9A to 105A
```

Index Rating Example - Bypassed Operation (AC-53b Utilization Category per IEC 60947-4-2)

```
9 to 105 - AC-53b:
  - OFF-time
    - 120 = 120s minimum OFF-time before restart
  - Overload Current Profile (X-Tx)
    - 5-4 = 5 times rated current (Ie) for 4s
  - Utilization Category
    - AC-53b = controller semiconductors provide squirrel-cage motor Start control only; bypassed for Run and Stop

9 to 105 = controllers with Rated Operational Currents from 9A to 105A
```
SR44 Soft Starter Selection Steps

1. Determine the required trip class based on the motor load and required start time.
2. Select the applicable SR44 part number based on the required Trip Class, motor HP, and connection type.

<table>
<thead>
<tr>
<th>SR44 Soft Starters - O/L Trip Classes</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>10</td>
</tr>
<tr>
<td>Heavy</td>
<td>20</td>
</tr>
<tr>
<td>Agitator</td>
<td>10</td>
</tr>
<tr>
<td>Air Compressor - Equalized</td>
<td>10B</td>
</tr>
<tr>
<td>Air Compressor - Loaded</td>
<td>20</td>
</tr>
<tr>
<td>Ball Mill</td>
<td>20</td>
</tr>
<tr>
<td>Centrifuge - extended start needed for sizing</td>
<td></td>
</tr>
<tr>
<td>Chiller</td>
<td>10B</td>
</tr>
<tr>
<td>Conveyor - Unloaded</td>
<td>10B</td>
</tr>
<tr>
<td>* Conveyor - Loaded</td>
<td>20</td>
</tr>
<tr>
<td>Crusher</td>
<td>30</td>
</tr>
<tr>
<td>Escalator</td>
<td>10B</td>
</tr>
<tr>
<td>* Fan - Low Inertia < 85A</td>
<td>10</td>
</tr>
<tr>
<td>* Fan - High Inertia > 85A</td>
<td>30</td>
</tr>
<tr>
<td>Feeder - Screw</td>
<td>10</td>
</tr>
<tr>
<td>Grinder</td>
<td>20</td>
</tr>
<tr>
<td>Hammer Mill</td>
<td>20</td>
</tr>
<tr>
<td>Lathe Machine</td>
<td>10B</td>
</tr>
<tr>
<td>Mills - Flour, etc.</td>
<td>20</td>
</tr>
<tr>
<td>Mixer - Unloaded</td>
<td>10B</td>
</tr>
<tr>
<td>Mixer - Loaded</td>
<td>20</td>
</tr>
<tr>
<td>Pelletizer</td>
<td>20</td>
</tr>
<tr>
<td>Plastic and Textile Machines</td>
<td>10B</td>
</tr>
<tr>
<td>Press - Flywheel</td>
<td>20</td>
</tr>
<tr>
<td>* Pump - Centrifugal</td>
<td>10B</td>
</tr>
<tr>
<td>* Pump - Positive Displacement - Unloaded</td>
<td>10</td>
</tr>
<tr>
<td>Rolling Mill</td>
<td>20</td>
</tr>
<tr>
<td>Saw - Band</td>
<td>10</td>
</tr>
<tr>
<td>Saw - Circular</td>
<td>20</td>
</tr>
<tr>
<td>Screen - Vibrating</td>
<td>20</td>
</tr>
<tr>
<td>Transformer, Voltage Regulator</td>
<td>10B</td>
</tr>
<tr>
<td>Tumbler</td>
<td>10</td>
</tr>
<tr>
<td>Wood Chipper</td>
<td>30</td>
</tr>
</tbody>
</table>

* Commonly required applications

SR44 Soft Starters – Selection Table

<table>
<thead>
<tr>
<th>SR44 Soft Starters – Selection Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR44 Soft Starter Selection Steps</td>
</tr>
<tr>
<td>1. Determine the required trip class based on the motor load and required start time.</td>
</tr>
<tr>
<td>2. Select the applicable SR44 part number based on the required Trip Class, motor HP, and connection type.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In-Line Connection</th>
<th>In-Delta Connection **</th>
<th>Application Trip Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Size</td>
<td>I (A)</td>
<td>HP @ 208V*</td>
</tr>
<tr>
<td>I (A)</td>
<td>HP @ 208V*</td>
<td>HP @ 230V</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>7.5</td>
<td>10</td>
</tr>
</tbody>
</table>

* 208V applications are UL listed only as low as 196V.
** For In-Delta connections, all six motor wires must be available for connection, and it is critical to exactly follow the In-Delta wiring diagram in the SR44 User Manual or Quick-start Guide. (Nine-lead motors CANNOT be connected in the delta.) The Soft Starter will only sense the Phase Current, which is about 58% of the Line Current.
*** Please consider SR55 series soft starters for higher-current applications.

For the latest prices, please check AutomationDirect.com.
Semiconductor Fuse Types for SR44 Soft Starters

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Ie (A)</th>
<th>S.C. Withstand</th>
<th>UL JFHR2 Fuses for UL Applications</th>
<th>Non-UL **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bussmann Model # *</td>
<td>Amps</td>
<td>Mersen (formerly Ferraz) Model # *</td>
<td>Bussmann Model # **</td>
<td>Edison Model # **</td>
</tr>
<tr>
<td>SR44-9</td>
<td>9</td>
<td>5kA</td>
<td>170M3110 6.9 URD 30 D08A 0063</td>
<td>63</td>
</tr>
<tr>
<td>SR44-16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR44-30</td>
<td>30</td>
<td></td>
<td>170M3112 6.9 URD 30 D08A 0100</td>
<td>100</td>
</tr>
</tbody>
</table>

* Use these fuses with SR44 soft starters in UL applications.
** Use these fuses with SR44 soft starters only in NON-UL applications.

UL requires Recognized special purpose fuses (JFHR2) for the protection of semiconductor devices (rated 700 VAC, as indicated in the Semiconductor Fuse Table) be used to obtain the short circuit ratings required by UL.

Suitable for use on a circuit capable of delivering not more than the indicated RMS Symmetrical Amperes at maximum rated operational voltage, when protected by Semiconductor Fuse type manufactured by Company and Model Number indicated in the table.

These fuses are for short circuit protection of the semiconductors and must be mounted externally by the user between the unit and the incoming main power source; not between the unit and the motor.

SR44 Internal Overload Trip

‘Current limit’, ‘Overload level’ and ‘Overload delay’ settings may be adjusted to limit overload currents in accordance with the trip curves shown here.

For motors with FLCs lower than the rated current of the SR44, the ‘Overload level’ may be adjusted using the following formula:

Overload Level = Motor FLC x 1.1(A)

Note:
The overload monitors only one of the phases, and the ‘Current Limit’ level is active only during motor starting.

IMPORTANT:
We recommend that the control supply is maintained between starts to ensure the integrity of the overload, which will reset on control power removal.

For the latest prices, please check AutomationDirect.com.
SR44 Dimensions

Dimensions = mm [in]

Ventilation for Enclosures

When fitting an SR44 into an electrical enclosure, ventilation must be provided if the heat output of the unit is greater than the enclosure will dissipate.

If the enclosure cannot dissipate enough heat, use the following formula to determine the fan requirement. An allowance has been incorporated into the formula so that the figure for “Q” is the air delivery quoted in the fan supplier’s data.

\[Q = \frac{4 \times W_t}{t_{\text{max}} - t_{\text{amb}}} \]

- \(Q \) = required volume of air (cubic meters per hour; m³/h)
- \(W_t \) = total heat produced by the unit and all other heat sources within the enclosure (Watts)
- \(t_{\text{max}} \) = maximum permissible temperature within the enclosure (40 °C for a fully rated SR44)
- \(t_{\text{amb}} \) = temperature of the air entering the enclosure (°C)

(If you prefer to work in CFM, substitute °F for °C. \(Q \) will then be in CFM, instead of m³/h.)

An approximation of the heat produced by the SR44 (in Watts) can be made by multiplying the Full Load Line Current by three. Exact figures for unit Full Load Current are available in the SR44 user manual.