RHINO PSV Series DIN rail Power Supplies

Economical Power Supplies
Highlights and Features

15–100W Models
• Ultra-compact size
• Up to 89% efficiency and built-in active PFC
• Universal AC input voltage
• Full power from −10°C to +55°C
• Low earth leakage current < 0.5 ma @ 264VAC
• Extreme low temperature cold start at −40°C
• NEC Class 2 / Limited Power Source (LPS) certified
• Plastic housing
• UL/cUL 508
• UL/cUL Recognized 60950-1
• CE
• Three year warranty

120–480W Models
• Universal AC input voltage
• Built-in constant current circuit for reactive loads
• Up to 89% efficiency
• Full power from −10°C to +50°C
• Compliance to SEMI F47 @ 200VAC voltage sag immunity
• Metal housing
• UL/cUL 508
• UL/cUL Recognized 60950-1
• CE
• Three year warranty

PSV Series Specifications

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
<th>Output Voltage</th>
<th>Maximum Output Power</th>
<th>Efficiency (Typ @ 115VAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSV5-15S</td>
<td>$33.00</td>
<td>5V</td>
<td>15W</td>
<td>79%</td>
</tr>
<tr>
<td>PSV5-25S</td>
<td>$46.50</td>
<td>5V</td>
<td>25W</td>
<td>82%</td>
</tr>
<tr>
<td>PSV12-50S</td>
<td>$46.50</td>
<td>12V</td>
<td>48W</td>
<td>88%</td>
</tr>
<tr>
<td>PSV24-30S</td>
<td>$33.00</td>
<td>24V</td>
<td>30W</td>
<td>87.5%</td>
</tr>
<tr>
<td>PSV24-50S</td>
<td>$43.50</td>
<td>24V</td>
<td>50W</td>
<td>89%</td>
</tr>
<tr>
<td>PSV24-100S</td>
<td>$59.00</td>
<td>24V</td>
<td>91.2 W</td>
<td>87%</td>
</tr>
<tr>
<td>PSV24-120S</td>
<td>$55.00</td>
<td>24V</td>
<td>120W</td>
<td>85%</td>
</tr>
<tr>
<td>PSV24-240S</td>
<td>$79.00</td>
<td>24V</td>
<td>240W</td>
<td>88%</td>
</tr>
<tr>
<td>PSV24-480S</td>
<td>$139.00</td>
<td>24V</td>
<td>480W</td>
<td>85%</td>
</tr>
<tr>
<td>PSV48-120S</td>
<td>$55.00</td>
<td>48V</td>
<td>120W</td>
<td>89%</td>
</tr>
</tbody>
</table>
RHINO PSV5-15S Power Supply

READ INSTRUCTIONS BEFORE INSTALLING OR OPERATING THIS DEVICE. KEEP FOR FUTURE REFERENCE.

1. Safety instructions
- Switch main power off before connecting or disconnecting the device. Risk of explosion!
- To guarantee sufficient convection cooling, please keep a distance of >40mm above and >20mm below the device as well as a lateral distance of >15mm to other cold source or heat source.
- Note that the enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Risk of burns!
- The main power must be turned off before connecting or disconnecting wires to the terminals!
- Do not introduce any objects into the unit!
- Dangerous voltage present for at least 5 minutes after disconnecting all sources of power.
- The power supplies are built-in units and must be installed in a cabinet or room (condensation free environment and indoor location) that is relatively free of conductive contaminants.
- The unit must be installed in an IP65 enclosure or cabinet in the final installation.
- CAUTION: FOR USE IN A CONTROLLED ENVIRONMENT.

2. Device description (Fig. 1)
1. Input terminal block connector
2. Output terminal block connector
3. DC voltage adjustment potentiometer
4. DC OK LED (green)
5. Universal mounting rail system

3. Mounting (Fig. 2)
The power supply unit can be mounted on 35mm DIN rails in accordance with EN60715. The device should be installed with input terminal block on the bottom.

Each device is delivered ready to install.

Snap on the DIN rail as shown in Fig 2:
1. Tilt the unit slightly upwards and put it onto the DIN rail.
2. Push downwards until stopped.
3. Press against the bottom front side for locking.
4. Shake the unit slightly to ensure that it is secured.

4. Dismounting (Fig. 3)
To uninstall, use a flat screwdriver to pull or slide down the latch as shown in Fig 3. Then slide the PSU in the opposite direction, release the latch and pull out the PSU from the rail.

5. Connection
The terminal block connectors allow easy and fast wiring.

You can use flexible (stranded wire) or solid cables with cross sections:

Electrical Connections and Wire Size

<table>
<thead>
<tr>
<th>Wire Size</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stranded / Solid</td>
<td>mm²</td>
</tr>
<tr>
<td>Input</td>
<td>0.52-3.3</td>
</tr>
<tr>
<td>Output</td>
<td>0.52-3.3</td>
</tr>
</tbody>
</table>

To secure reliable and shock proof connections, the stripping length should be 4-5mm (see Fig 4 (1)). Please ensure that wires are fully inserted into the connecting terminals as shown in Fig 4 (2).

In accordance to EN60950 / UL60950, flexible cables require ferrules.

Use appropriate copper cables that are designed to sustain operating temperature of at least 60°C/75°C for USA or at least 90°C for Canada.

5.1. Input connection (Fig. 1, Fig. 5)
Use L, N and GND connections of input terminal connector (see Fig. 1 (1)) to establish the 100-240 VAC connection. Typical connection methods are shown in Figure 5.

The unit is protected with an internal fuse (not replaceable) at L pin and it has been tested and approved on 20A (UL) and 16A (IEC) branch circuits without additional protection device. An external protection device is only required if the supplying branch has an ampacity greater than above. Thus, if an external protective device is necessary, or utilized, a minimum value of 10A B- or 6A C-characteristic breaker should be used.

The internal fuse must not be replaced by the user.

5.2. Output connection (Fig. 1 (2))
Use the “+” and “−” screw connections to establish the SVDC connection. The output provides SVDC. The output voltage can be adjusted from 5 to 5.5 VDC on the potentiometer. The green LED DC OK displays correct function of the output (Fig. 1 (4)). The device has a short circuit and overload protection and an overvoltage protection limited to 6.325-7.425 VDC.

5.3. Output characteristic curve
The device functions normal under operating line and load conditions. In the event of a short circuit or overload the output voltage and current collapses (IO = 110-150%). The secondary voltage is reduced and bounces until short circuit or overload on the secondary side has been removed.

5.4. Thermal behavior (Fig. 6)
The device functions normal under operating line and load conditions. In the event of a short circuit or overload the output voltage and current collapses (IO = 110-150%). The secondary voltage is reduced and bounces until short circuit or overload on the secondary side has been removed.

5.5. Thermal behavior (Fig. 6)
In the case of ambient temperatures:
1. At -10°C to -20°C [-14°F to -4°F], the output capacity has to be reduced by 2% per degree Celsius increase in temperature.
2. Above +55°C [131°F], the output capacity has to be reduced by 3.33% per degree Celsius increase in temperature.

If the output capacity is not reduced when TAmb > 55°C [131°F], the device will engage thermal protection by switching off, i.e., the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.

For Technical Assistance Call 770-894-9200
RHINO PSV5-15S Power Supply

Technical Specifications

Input (AC)
- **Nominal input voltage / frequency**: 100-240 VAC / 50-60 Hz
- **Voltage range**: 86-94 VAC
- **Frequency**: 47-63 Hz
- **Nominal current**: < 0.5 A @ 115VAC, < 0.3 A @ 230VAC
- **Inrush current limitation (+25°C, cold start)**: < 35A @ 115VAC, < 65A @ 230VAC
- **Mains buffering at nominal load (typ.)**: 20ms @ 115VAC (100% load), 100ms @ 230VAC (100% load)
- **Turn-on time**: < 3s @ 115VAC, < 1.5s @ 230VAC (100% load)
- **Internal fuse**: 1.3A 5/380 (non-replaceable)
- **Recommended backup protection**: 10A B- or 6A C- characteristic circuit breaker
- **Leakage current**: < 1mA @ 240VAC

Output (DC)
- **Nominal output voltage U_{OUT} / tolerance**: 5VDC ± 2 %
- **Voltage adjustment range**: 5-5.5 VDC (maximum power ≤ 15W)
- **Nominal current**: 3A
- ** Dropout**
 - -10°C to -20°C (2%/°C), > 55°C (3.33%/°C) in vertical orientation
- **Startup with capacitive loads**: Max. 3,000μF
- **Max. power dissipation idling / nominal load approx.**: 0.3 W / 4 W
- **PARD (20MHz) at 100% load**: < 75 mVpp

General Data
- **Type of housing**: Plastic (PC), enclosed
- **LED signals**: Green LED DC OK
- **MTBF**: > 350,000 hrs. as per Telcordia
- **Dimensions (L x W x H)**: 75mm x 21mm x 89.5 mm (2.95 in x 0.83 in x 3.52 in) (See www.AutomationDirect.com for complete engineering drawings.)
- **Weight**: 0.11 kg [3.9 oz]
- **Connection method**: Screw connection
- **Stripping length**: 4-5mm [0.16-0.20 in]
- **Operating temperature (surrounding air temperature)**: -20°C to +70°C [-4°F to +158°F] (Refer to Fig. 6)
- **Storage temperature**: -40°C to +85°C [-40°F to +185°F]
- **Humidity at +25°C, no condensation**: 5 to 95% RH
- **Vibration**: Operating: IEC60068-2-6, Sine Wave: 10Hz to 50Hz @ 19.6m/s²; displacement of 0.35 mm, 60min per axis for all X, Y, Z directions. Non-Operating: IEC60068-2-6, Random: 5Hz to 500Hz (2.09 Grms); 20 min. per axis for all X, Y, Z directions
- **Pollution degree**: 2
- **Altitude (operating)**: 2000m

Certification and Standards
- **Safety entry low-voltage**: SELV (EN60950)
- **Electrical safety (of information technology equipment)**: UL/C-UL recognized to UL60950-1 and CSA C22.2 No. 60950-1 (File No. E198298), CB scheme to IEC60950-1, Limited Power Source (LPS)
- **Industrial control equipment**: UL/C-UL listed to UL508 and CSA C22.2 No.107.1-01 (File No. E197592)
- **Class 2 power supply**: UL/C-UL listed to UL508 and CSA C22.2 No.107.1-01 (File No. E197592)
- **CE**
 - In conformance with EMC directive 2014/30/EU and Low Voltage Directive 2014/35/EU
- **Component power supply for general use**: EN61508-3
- **Immunity**: EN55024, EN61000-6-1, EN61000-6-2, EN61000-4-2, 3, 4, 5, 6, 8, 11
- **Emission**: EN55032, EN55011, EN61000-3-3, EN61000-3-2, EN61000-4-3

RoHS Compliant: Yes

Safety and Protection
- Surge voltage protection against internal surge voltages: No
- Isolation voltage:
 - Input / output: 3kVAC
 - Input / PE: 3kVAC
 - Output / PE: 0.5 kVAC
- Protection degree: IP20
- Safety class: Class I with PE connection
RHINO PSV5-25S Power Supply

READ INSTRUCTIONS BEFORE INSTALLING OR OPERATING THIS DEVICE. KEEP FOR FUTURE REFERENCE.

1. Safety instructions
 - Switch main power off before connecting or disconnecting the device. Risk of explosion!
 - To guarantee sufficient convection cooling, please keep a distance of >40mm above and >20mm below the device as well as a lateral distance of >15mm to other cold source. In case the adjacent device is a heat source, the lateral distance will be >25mm.
 - Note that the enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Risk of burns!
 - The main power must be turned off before connecting or disconnecting wires to the terminals!
 - Do not introduce any objects into the unit!
 - Dangerous voltage present for at least 5 minutes after disconnecting all sources of power.
 - The power supplies are built-in units and must be installed in a cabinet or room (condensation free environment and indoor locations) that is relatively free of conductive contaminants.
 - The unit must be installed in an IP5X enclosure or cabinet in the final installation.

- CAUTION: FOR USE IN A CONTROLLED ENVIRONMENT.

2. Device description (Fig. 1)
 (1) Input terminal block connector
 (2) Output terminal block connector
 (3) DC voltage adjustment potentiometer
 (4) DC OK LED (green)
 (5) Universal mounting rail system

3. Mounting (Fig. 2)
The power supply unit can be mounted on 35mm DIN rails in accordance with EN60715. The device should be installed with input terminal block on the bottom. Each device is delivered ready to install. Snap on the DIN rail as shown in Fig. 2:
 1. Tilt the unit slightly upwards and put it onto the DIN rail.
 2. Push downwards until stopped.
 3. Press against the bottom front side for locking.
 4. Shake the unit slightly to ensure that it is secured.

4. Dismounting (Fig. 3)
To uninstall, use a flat screwdriver to pull or slide down the latch as shown in Fig. 3. Then slide the PSU in the opposite direction, release the latch and pull out the PSU from the rail.

5. Connection
 - The terminal block connectors allow easy and fast wiring.
 - You can use flexible (stranded wire) or solid cables with cross sections:

<table>
<thead>
<tr>
<th>Electrical Connections and Wire Size</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm² / AWG</td>
<td>N·m</td>
</tr>
<tr>
<td>Input</td>
<td>0.32-3.3</td>
</tr>
<tr>
<td>Output</td>
<td>0.82-3.3</td>
</tr>
</tbody>
</table>

To secure reliable and shock proof connections, the stripping length should be 4-5mm (see Fig. 4 (1)). Please ensure that wires are fully inserted into the connecting terminals as shown in Fig. 4 (2).

In accordance to EN60950 / UL60950, flexible cables require ferrules.

Use appropriate copper cables that are designed to sustain operating temperature of at least 60°C/75°C for USA or at least 90°C for Canada.

5.1. Input connection (Fig. 1, Fig. 5)
Use L, N and GND connections of input terminal connector (see Fig. 1 (1)) to establish the 100-240 VAC connection. Typical connection methods are shown in Figure 5.

The unit is protected with an internal fuse (not replaceable) at L pin and it has been tested and approved on 20A (UL) and 16A (IEC) branch circuits without additional protection device. An external protection device is only required if the supplying branch has an ampacity greater than above. Thus, if an external protective device is necessary, or utilized, a minimum value of 20A B- or 10A C- characteristic breaker should be used.

5.2. Output connection (Fig. 1 (2))
Use the “+” and “-” screw connections to establish the SVDC connection. The output provides SVDC. The output voltage can be adjusted from 5 to 5.5 VDC on the potentiometer. The green LED DC OK displays correct function of the output (Fig. 1 (H)). The device has a short circuit and overload protection and an overvoltage protection limited to 6.325-7.425 VDC.

5.3. Output characteristic curve
The device functions normal under operating line and load conditions. In the event of a short circuit or overload the output voltage and current collapses to 0 (Fig. 1 (I)). The secondary side is protected with an internal fuse at L pin, standard testing for UL60950. The protection device is only required if the supplying branch has an ampacity greater than above. Thus, if an external protective device is necessary, or utilized, a minimum value of 20A B- or 10A C- characteristic breaker should be used.

5.4. Thermal behavior (Fig. 6)
In the case of ambient temperatures:
 1. At -10°C to -20°C [14°F to -4°F], the output capacity has to be reduced by 2% per degree Celsius increase in temperature.
 2. Above +55°C [131°F], the output capacity has to be reduced by 3.3% per degree Celsius increase in temperature.
 3. Above +65°C [149°F], the output capacity has to be reduced by 5% per degree Celsius increase in temperature.

If the output capacity is not reduced when $T_{amb} > +65°C$ [149°F], the device will engage thermal protection by switching off, i.e., the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.

FOR TECHNICAL ASSISTANCE CALL 770-844-4200
Technical Specifications

<table>
<thead>
<tr>
<th>Input (AC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal input voltage / frequency</td>
<td>100-240 VAC / 50-60 Hz</td>
</tr>
<tr>
<td>Voltage range</td>
<td>85-264 VAC</td>
</tr>
<tr>
<td>Frequency</td>
<td>47-63 Hz</td>
</tr>
<tr>
<td>Nominal current</td>
<td>< 0.8 A @ 115VAC, < 0.5 A @ 230VAC</td>
</tr>
<tr>
<td>Inrush current limitation (+25°C, cold start)</td>
<td>< 35A @ 115VAC, < 60A @ 230VAC</td>
</tr>
<tr>
<td>Mains buffering at nominal load (typ.)</td>
<td>20ms typ. @ 115VAC (100% load)</td>
</tr>
<tr>
<td>Turn-on time</td>
<td>< 3s @ 115VAC, < 1.5 s @ 230VAC (100% load)</td>
</tr>
<tr>
<td>Internal fuse</td>
<td>T 3.15 A / 250V (non-replaceable)</td>
</tr>
<tr>
<td>Recommended backup protection</td>
<td>20A B- or 10A C- characteristic circuit breaker</td>
</tr>
<tr>
<td>Leakage current</td>
<td>< 1mA @ 240VAC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output (DC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal output voltage Uo / tolerance</td>
<td>5VDC ± 2 %</td>
</tr>
<tr>
<td>Voltage adjustment range</td>
<td>5-5.5 VDC (maximum power ≤ 25W)</td>
</tr>
<tr>
<td>Nominal current</td>
<td>5A</td>
</tr>
<tr>
<td>Derating</td>
<td>refer to Fig. 6</td>
</tr>
<tr>
<td>Startup with capacitive loads</td>
<td>Max. 3,000μF</td>
</tr>
<tr>
<td>Efficiency at 100% load</td>
<td>70.0% typ. @ 115VAC, 80.0% typ. @ 230VAC</td>
</tr>
<tr>
<td>PARID (200MHz) at 100% load</td>
<td>< 75 mVpp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of housing</td>
<td>Plastic (PC), enclosed</td>
</tr>
<tr>
<td>LED signals</td>
<td>Green LED DC OK</td>
</tr>
<tr>
<td>MTRF</td>
<td>> 350,000 hrs. as per Telcordia</td>
</tr>
<tr>
<td>Dimensions (L x W x H)</td>
<td>75mm x 30mm x 89.5 mm (2.95 in x 1.18 in x 3.52 in) (See www.AutomationDirect.com for complete engineering drawings.)</td>
</tr>
<tr>
<td>Weight</td>
<td>0.16 kg [5.6 oz]</td>
</tr>
<tr>
<td>Connection method</td>
<td>Screw connection</td>
</tr>
<tr>
<td>Stripping length</td>
<td>4-5mm [0.16-0.20 in]</td>
</tr>
<tr>
<td>Operating temperature (surrounding air temperature)</td>
<td>-20°C to +70°C (-4°F to +158°F) (Refer to Fig. 6)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40°C to +65°C [-40°F to +149°F]</td>
</tr>
<tr>
<td>Humidity at +25°C, no condensation</td>
<td>5 to 95% RH</td>
</tr>
<tr>
<td>Vibration</td>
<td>Operating: IEC60068-2-6, Sine Wave: 10Hz to 500Hz @ 19.6m/s²; displacement of 0.35 mm, 60min per axis for all X, Y, Z directions</td>
</tr>
<tr>
<td></td>
<td>Non-Operating: IEC60068-2-6, Random: 5Hz to 500Hz (2.09 Grms); 20 min. per axis for all X, Y, Z directions</td>
</tr>
<tr>
<td>Shock</td>
<td>Operating: IEC60068-2-27, Half Sine Wave: 10G for a duration of 11ms, shock for 1 direction (X axis)</td>
</tr>
<tr>
<td></td>
<td>Non-Operating: IEC60068-2-27, Half Sine Wave: 50G for a duration of 11ms, 3 shocks for each 3 directions</td>
</tr>
<tr>
<td>Pollution degree</td>
<td>2</td>
</tr>
<tr>
<td>Altitude (operating)</td>
<td>2000m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Certification and Standards</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety entry low voltage</td>
<td>SELV (EN60950)</td>
</tr>
<tr>
<td>Electrical safety (of information technology equipment)</td>
<td>UL/ULC listed to UL60950-1 and CSA C22.2 No. 60950-1 (File No. E198298), CS scheme to IEC60950-1, Limited Power Source (LPS)</td>
</tr>
<tr>
<td>Industrial control equipment</td>
<td>UL/ULC listed to UL508 and CSA C22.2 No. 107.1-01 (File No. E197592)</td>
</tr>
<tr>
<td>Class 2 power supply</td>
<td>UL/ULC listed to UL508 and CSA C22.2 No. 107.1-01 (File No. E197592)</td>
</tr>
<tr>
<td>CE</td>
<td>In conformance with EMC directive 2014/30/EU and Low Voltage Directive 2014/35/EU</td>
</tr>
<tr>
<td>Component power supply for general use</td>
<td>EN61204-3</td>
</tr>
<tr>
<td>Immunity</td>
<td>EN55024, EN61000-6-1, EN61000-6-2 (EN61000-4-2, 3, 4, 5, 6, 8, 11)</td>
</tr>
<tr>
<td>Emission</td>
<td>EN50302, EN50011, EN61000-3-3, EN61000-3-3, EN61000-6-4</td>
</tr>
</tbody>
</table>

| **RoHS Compliant** | Yes |

<table>
<thead>
<tr>
<th>Safety and Protection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Surge voltage protection against internal surge voltages</td>
<td>No</td>
</tr>
<tr>
<td>Isolation voltage: Input / output Input / PE Output / PE</td>
<td>3 kVAC 3 kVAC 0.5 kVAC</td>
</tr>
<tr>
<td>Protection degree</td>
<td>IP20</td>
</tr>
<tr>
<td>Safety class</td>
<td>Class I with PE connection</td>
</tr>
</tbody>
</table>

1st Edition, 01/2019
RHINO PSV12-50S Power Supply

READ INSTRUCTIONS BEFORE INSTALLING OR OPERATING THIS DEVICE.
KEEP FOR FUTURE REFERENCE.

1. Safety instructions
 - Switch main power off before connecting or disconnecting the device. Risk of explosion!
 - To guarantee sufficient convection cooling, please keep a distance of >40mm above and >20mm below the device as well as a lateral distance of >15mm to other cold source. In case the adjacent device is a heat source, the lateral distance will be >25mm.
 - Note that the enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Risk of burns!
 - The main power must be turned off before connecting or disconnecting wires to the terminals!
 - Do not introduce any objects into the unit!
 - Dangerous voltage present for at least 5 minutes after disconnecting all sources of power.
 - The power supplies are built-in units and must be installed in a cabinet or room (condensation free environment and indoor location) that is relatively free of conductive contaminants.
 - The unit must be installed in an IP55 enclosure or cabinet in the final installation.
 - CAUTION: FOR USE IN A CONTROLLED ENVIRONMENT.

2. Device description (Fig. 1)
 (1) Input terminal block connector
 (2) Output terminal block connector
 (3) DC voltage adjustment potentiometer
 (4) DC OK LED (green)
 (5) Universal mounting rail system

3. Mounting (Fig. 2)
The power supply unit can be mounted on 35mm DIN rails in accordance with EN60715. The device should be installed with input terminal block on the bottom.

Each device is delivered ready to install.
Snap on the DIN rail as shown in Fig. 2:
1. Lift the unit slightly upwards and put it onto the DIN rail.
2. Push downwards until stopped.
3. Press against the bottom front side for locking.
4. Shake the unit slightly to ensure that it is secured.

4. Dismounting (Fig. 3)
To uninstall, use a flat screwdriver to pull or slide down the latch as shown in Fig. 3. Then slide the PSU in the opposite direction, release the latch and pull out the PSU from the rail.

5. Connection
The terminal block connectors allow easy and fast wiring.
You can use flexible (stranded wire) or solid cables with cross sections:

<table>
<thead>
<tr>
<th>Electrical Connections and Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stranded / Solid</td>
</tr>
<tr>
<td>mm²</td>
</tr>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output</td>
</tr>
</tbody>
</table>

To secure reliable and shock proof connections, the stripping length should be 4.5mm (see Fig. 1 (1)). Please ensure that wires are fully inserted into the connecting terminals as shown in Fig. 4 (2).

In accordance to EN60950 / UL60950, flexible cables require ferrules.

Use appropriate copper cables that are designed to sustain operating temperature of at least 60°C/75°C for USA or at least 90°C for Canada.

5.1. Input connection (Fig. 1, Fig. 5)
Use L, N and GND connections of input terminal connector (see Fig. 1 (1)) to establish the 100-240 VAC connection. Typical connection methods are shown in Figure 5.

The unit is protected with an internal fuse (not replaceable) at L pin and it has been tested and approved on 20A (UL) and 16A (IEC) branch circuits without additional protection device. An external protection device is only required if the supplying branch has an ampacity greater than above. Thus, if an external protective device is necessary, or utilized, a minimum value of 20A B- or 13A C- characteristic breaker should be used.

The internal fuse must not be replaced by the user.

5.2. Output connection (Fig. 1 (2))
Use the “+” and “-” screw connections to establish the 12 VDC connection. The output provides 12 VDC.
The output voltage can be adjusted from 12 to 15 VDC on the potentiometer. The green LED DC OK displays correct function of the output (Fig. 1 (4)). The device has a short circuit and overload protection and an overvoltage protection limited to 16-18 VDC.

5.3. Output characteristic curve
The device functions normal under operating line and load conditions. In the event of a short circuit or overload the output voltage and current collapses (IO = 110-150%). The secondary voltage is reduced and the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.

5.4. Thermal behavior (Fig. 6)
In the case of ambient temperatures:
1. At -10°C to -20°C [-14°F to -4°F], the output capacity has to be reduced by 2% per degree Celsius increase in temperature.
2. Above +55°C [131°F], the output capacity has to be reduced by 3.33% per degree Celsius increase in temperature.

If the output capacity is not reduced when Tambient > 55°C [131°F], the device will engage thermal protection by switching off, i.e., the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.

For technical assistance call 770-844-4200

For the latest prices, please check AutomationDirect.com.
Technical Specifications

Input (AC)
- **Nominal input voltage / frequency**: 100-240 VAC / 50-60 Hz
- **Voltage range**: 85-264 VAC
- **Frequency**: 47-63 Hz
- **Nominal current**: < 1.0 A @ 115VAC, < 0.6 A @ 230VAC
- **Inrush current limitation (+25°C, cold start)**: < 35A @ 115VAC, < 60A @ 230VAC
- **Mains buffering at nominal load (typ.)**: 20ms typ. @ 115VAC (100% load)
- **Turn-on time**: < 3s @ 115VAC, < 1.5 s @ 230VAC (100% load)
- **Internal fuse**: T 3.15 A / 250V (non-replaceable)
- **Recommended backup protection**: 20A B- or 13A C- characteristic circuit breaker
- **Leakage current**: < 1mA @ 240VAC

Output (DC)
- **Nominal output voltage UN / tolerance**: 12VDC ± 2 %
- **Voltage adjustment range**: 12-15 VDC (maximum power ≤ 48W)
- **Nominal current**: 4A
- **Derating**: refer to Fig. 6
- **Startup with capacitive loads**: Max. 3,000μF
- **Max. power dissipation idling / nominal load**: approx. 0.5 W / 7 W
- **Efficiency at 100% load**: 86.0% typ. @ 115VAC, 88.0% typ. @ 230VAC
- **PARD (20MHz) at 100% load**: < 75 mVpp

General Data
- **Type of housing**: Plastic (PC), enclosed
- **LED signals**: Green LED DC OK
- **MTBF**: > 350,000 hrs. as per Telcordia
- **Dimensions (L x W x H)**: 75mm x 30mm x 89.5 mm [2.95 in x 1.18 in x 3.52 in]
- **Weight**: 0.18 kg [6.3 oz]
- **Connection method**: Screw connection
- **Stripping length**: 4-5mm [0.16-0.20 in]
- **Operating temperature (surrounding air temperature)**: -20°C to +70°C [-4°F to +158°F] (Refer to Fig. 6)
- **Storage temperature**: -40°C to +85°C [-40°F to +185°F]
- **Humidity at +25°C, no condensation**: 5 to 95% RH
- **Vibration**: Operating: IEC60068-2-6, Sinewave: 10Hz to 500Hz @ 19.6m/s², displacement of 0.35 mm, 60min per axis for all X, Y, Z directions
- **Shock**: Operating: IEC60068-2-27, Half Sine Wave: 10G for a duration of 11ms, shock for 1 direction (X axis)
- **Pollution degree**: 2
- **Altitude (operating)**: 2000m

Certification and Standards
- **Safety entry low voltage**: SELV (EN60950)
- **Electrical safety (of information technology equipment)**: UL/C-UL recognized to UL60950-1 and CSA C22.2 No. 60950-1 (File No. E198298), CS scheme to IEC60950-1, Limited Power Source (LPS)
- **Industrial control equipment**: UL/C-UL listed to UL508 and CSA C22.2 No.107.1-01 (File No. E197592)
- **Class 2 power supply**: UL/C-UL listed to UL508 and CSA C22.2 No.107.1-01 (File No. E197592)
- **CE**: In conformance with EMC directive 2014/30/EU and Low Voltage Directive 2014/35/EU
- **Component power supply for general use**: EN61204-3
- **Immunity**: EN55032, EN61000-6-2, EN16000-6-3
- **Emission**: EN55022, EN55024, EN61000-6-2, EN61000-6-3, EN61000-6-4
- **RHOS Compliant**: Yes

Safety and Protection
- **Surge voltage protection against internal surge voltages**: No
- **Isolation voltage**: Input / output: 3kVAC, Input / PE: 3kVAC, Output / PE: 0.5 kVAC
- **Protection degree**: IP20
- **Safety class**: Class I with PE connection
RHINO PSV24-30S Power Supply

READ INSTRUCTIONS BEFORE INSTALLING OR OPERATING THIS DEVICE. KEEP FOR FUTURE REFERENCE.

1. Safety instructions
- Switch main power off before connecting or disconnecting the device. Risk of explosion!
- To guarantee sufficient convection cooling, please keep a distance of >10mm above and >20mm below the device as well as a lateral distance of >10mm to other cold sources. In case the adjacent device is a heat source, the lateral distance will be >25mm.
- Note that the enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Risk of burns!
- The main power must be turned off before connecting or disconnecting wires to the terminals!
- Do not introduce any objects into the unit!
- Dangerous voltage present for at least 5 minutes after disconnecting all sources of power.
- The power supplies are built-in units and must be installed in a cabinet or room (condensation free environment and indoor location) that is relatively free of conductive contaminants.
- The unit must be installed in an IP5X enclosure or cabinet in the final installation.
- CAUTION: FOR USE IN A CONTROLLED ENVIRONMENT.

2. Device description (Fig. 1)
- (1) Input terminal block connector
- (2) Output terminal block connector
- (3) DC voltage adjustment potentiometer
- (4) DC OK LED (green)
- (5) Universal mounting rail system

3. Mounting (Fig. 2)
The power supply unit can be mounted on 35mm DIN rails in accordance with EN60715. The device should be installed with input terminal block on the bottom.

4. Dismounting (Fig. 3)
To uninstall, use a flat screwdriver to pull or slide down the latch as shown in Fig. 3. Then slide the PSU in the opposite direction, release the latch and pull out the PSU from the rail.

5. Connection
The terminal block connectors allow easy and fast wiring.

You can use flexible (stranded wire) or solid cables with cross sections:

<table>
<thead>
<tr>
<th>Electrical Connections and Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stranded / Solid</td>
</tr>
<tr>
<td>mm²</td>
</tr>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output</td>
</tr>
</tbody>
</table>

To secure reliable and shock proof connections, the stripping length should be 4-5mm (see Fig. 4 (1)). Please ensure that wires are fully inserted into the connecting terminals as shown in Fig. 4 (2).

5.1. Input connection (Fig. 1, Fig. 5)
Use L, N and GND connections of input terminal connector (see Fig. 1 (1)) to establish the 100-240 VAC connection. Typical connection methods are shown in Figure 5.
The unit is protected with an internal fuse (not replaceable) at L pin and it has been tested and approved on 20A (UL) and 16A (IEC) branch circuits without additional protection device. An external protection device is only required if the supplying branch has an ampacity greater than above. Thus, if an external protective device is necessary, or utilized, a minimum value of 13A B- or 8A C- characteristic breaker should be used.

The internal fuse must not be replaced by the user.

5.2. Output connection (Fig. 1 (2))
Use the “+” and “−” screw connections to establish the 24VDC connection. The output provides 24VDC.
The output voltage can be adjusted from 24V to 28V on the potentiometer. The green LED DC OK displays correct function of the output (Fig. 1 (4)). The device has a short circuit and overload protection and an overvoltage protection limited to 30-34.8 VDC.

5.3. Output characteristic curve
The device functions normal under operating line and load conditions. In the event of a short circuit or overload the output voltage and current collapses (I_O = 110-150%). The secondary voltage is reduced and bounces until short circuit or overload on the secondary side has been removed.

5.4. Thermal behavior (Fig. 6)
In the case of ambient temperatures:
- At -10°C to -20°C [14°F to -4°F], the output capacity has to be reduced by 2% per degree Celsius increase in temperature.
- Above +55°C [131°F], the output capacity has to be reduced by 3.33% per degree Celsius increase in temperature.
If the output capacity is not reduced when T_Amb > +55°C [131°F], the device will engage thermal protection by switching off, i.e., the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.

FOR TECHNICAL ASSISTANCE CALL 770-844-4200
RHINO PSV24-30S Power Supply

Technical Specifications

Input (AC)
- Nominal input voltage / frequency: 100-240 VAC / 50-60 Hz
- Voltage range: 85-264 VAC
- Frequency: 47-63 Hz
- Nominal current: < 0.8 A @ 115VAC, < 0.4 A @ 230VAC
- Inrush current limitation (+25°C, cold start): < 35A @ 115VAC, < 60A @ 230VAC
- Mains buffering at nominal load (typ.): 20ms @ 115VAC (100% load)
- Turn-on time: < 3s @ 115VAC, < 1.6 s @ 230VAC (100% load)
- Internal fuse: T 3.15 A / 250V (non-replaceable)
- Recommended backup protection: 13A B- or 8A C- characteristic circuit breaker
- Leakage current: < 1mA @ 240VAC

Output (DC)
- Nominal output voltage U0V / tolerance: 24VDC ± 2%
- Voltage adjustment range: 24-28 VDC (maximum power ≤ 30W)
- Nominal current: 1.25 A
- Derating: refer to Fig. 6
- Startup with capacitive loads: Max. 3,000μF
- Max. power dissipation idling / nominal load approx.: 0.5 W / 4.5 W
- Efficiency at 100% load: 87.0% typ. @ 115VAC, 88.0% typ. @ 230VAC
- PARD (20MHz) at +25°C: < 75 mVpp

General Data
- Type of housing: Plastic (PC), enclosed
- LED signals: Green LED DC OK
- MTBF: > 350,000 hrs. as per Telcordia
- Dimensions (L x W x H): 75mm x 21mm x 89.5 mm [2.95 in x 0.83 in x 3.52 in] (See www.AutomationDirect.com for complete engineering drawings.)
- Weight: 0.11 kg [3.9 oz]
- Connection method: Screw connection
- Stripping length: 4-5mm [0.16-0.20 in]
- Operating temperature (surrounding air temperature): -20°C to +70°C [-4°F to +158°F] (Refer to Fig. 6)
- Storage temperature: -40°C to +85°C [-40°F to +185°F]
- Humidity at +25°C, no condensation: 5 to 95% RH
- Vibration: Operating: IEC60068-2-6, Sine Wave: 10Hz to 500Hz @ 19.6m/s²; displacement of 0.35 mm, 60min per axis for all X, Y, Z directions
 Non-Operating: IEC60068-2-6, Random: 5Hz to 500Hz (2.09 Grms); 20 min. per axis for all X, Y, Z directions
- Shock: Operating: IEC60068-2-27, Half Sine Wave: 10G for a duration of 11ms, shock for 1 direction (X axis)
 Non-Operating: IEC60068-2-27, Half Sine Wave: 50G for a duration of 11ms, 3 shocks for each 3 directions
- Pollution degree: 2
- Altitude (operating): 2000m

Certification and Standards
- Safety entry low voltage: SELV (EN60950)
- Electrical safety (of information technology equipment): UL/C-UL recognized to UL60950-1 and CSA C22.2 No. 60950-1 (File No. E198298), CS scheme to EC60950-1, Limited Power Source (LPS)
- Industrial control equipment: UL/C-UL listed to UL508 and CSA C22.2 No.107.1-01 (File No. E197592)
- Class 2 power supply: UL/C-UL listed to UL508 and CSA C22.2 No.107.1-01 (File No. E197592)
- CE: In conformance with EMC directive 2014/30/EU and Low Voltage Directive 2014/35/EU
- Component power supply for general use: EN61204-3
- Immunity: EN55011, EN61000-6-1, EN61000-6-2 (EN61000-4-2, 3, 4, 5, 6, 8, 11) Immunity: ENS5032, ENS50011, EN61000-6-3, EN61000-6-4
- Emission: ENS5032, ENS50011, EN61000-6-3, EN61000-6-4

Safety and Protection
- Surge voltage protection against internal surge voltages: No
- Isolation voltage:
 - Input / output: 3kVAC
 - Input / PE: 3kVAC
 - Output / PE: 0.5 kVAC
- Protection degree: IP20
- Safety class: Class I with PE connection

1st Edition, 01/2019
RHINO PSV24-50S Power Supply

READ INSTRUCTIONS BEFORE INSTALLING OR OPERATING THIS DEVICE. KEEP FOR FUTURE REFERENCE.

1. Safety instructions
- Switch main power off before connecting or disconnecting the device. Risk of explosion!
- To guarantee sufficient convection cooling, please keep a distance of >40mm above and >20mm below the device as well as a lateral distance of >15mm to other cold source. In case the adjacent device is a heat source, the lateral distance will be >25mm.
- Note that the enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Risk of burns!
- The main power must be turned off before connecting or disconnecting wires to the terminals!
- Do not introduce any objects into the unit!
- Dangerous voltage present for at least 5 minutes after disconnecting all sources of power.
- The power supplies are built-in units and must be installed in a cabinet or room (condensation free environment and indoor location) that is relatively free of conductive contaminants.
- The unit must be installed in an IP55 enclosure or cabinet in the final installation.
- **CAUTION: FOR USE IN A CONTROLLED ENVIRONMENT.**

2. Device description (Fig. 1)
- (1) Input terminal block connector
- (2) Output terminal block connector
- (3) DC voltage adjustment potentiometer
- (4) DC OK LED (green)
- (5) Universal mounting rail system

3. Mounting (Fig. 2)
The power supply unit can be mounted on 35mm DIN rails in accordance with EN60715. The device should be installed with input terminal block on the bottom.
Each device is delivered ready to install. Snap on the DIN rail as shown in Fig. 2:
1. Tilt the unit slightly upwards and put it onto the DIN rail.
2. Push downwards until stopped.
3. Press against the bottom front side for locking.
4. Shake the unit slightly to ensure that it is secured.

4. Dismounting (Fig. 3)
To uninstall, use a flat screwdriver to pull or slide down the latch as shown in Fig. 3. Then slide the PSU in the opposite direction, release the latch and pull out the PSU from the rail.

5. Connection
The terminal block connectors allow easy and fast wiring.
You can use flexible (stranded wire) or solid cables with cross sections:

Electrical Connections and Wire Size

<table>
<thead>
<tr>
<th>Stranded / Solid</th>
<th>AWG</th>
<th>N·m</th>
<th>lb·in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>0.32-3.3</td>
<td>22-12</td>
<td>0.51</td>
</tr>
<tr>
<td>Output</td>
<td>0.52-3.3</td>
<td>20-12</td>
<td>0.51</td>
</tr>
</tbody>
</table>

To secure reliable and shock proof connections, the stripping length should be 4-5mm (see Fig. 4 (1)). Please ensure that wires are fully inserted into the connecting terminals as shown in Fig. 4 (2).

In accordance to EN60950 / UL60950, flexible cables require ferrules.
Use appropriate copper cables that are designed to sustain operating temperature of at least 60°C/75°C for USA or at least 90°C for Canada.

5.1. Input connection (Fig. 1, Fig. 5)
Use L, N and GND connections of input terminal connector (see Fig. 1 (1)) to establish the 100-240 VAC connection. Typical connection methods are shown in Figure 5.
The unit is protected with an internal fuse (not replaceable) at L pin and it has been tested and approved on 20A (UL) and 16A (IEC) branch circuits without additional protection device. An external protection device is only required if the supplying branch has an ampacity greater than above. Thus, if an external protective device is necessary, or utilized, a minimum value of 20A B- or 13A C- characteristic breaker should be used.

![The internal fuse must not be replaced by the user.](image)

5.2. Output connection (Fig. 1 (2))
Use the “+” and “-” screw connections to establish the 24VDC connection. The output provides 24VDC.
The output voltage can be adjusted from 24 to 28 VDC on the potentiometer. The green LED DC OK displays correct function of the output (Fig. 1 (4)). The device has a short circuit and overload protection and an overvoltage protection limited to 30-34.8 VDC.

5.3. Output characteristic curve
The device functions normal under operating line and load conditions. In the event of a short circuit or overload the output voltage and current collapses (IO = 110-150%). The secondary voltage is reduced and opens until short circuit or overload on the secondary side has been removed.

5.4. Thermal behavior (Fig. 6)
In the case of ambient temperatures:
1. At -10°C to -20°C [14°F to -4°F], the output capacity has to be reduced by 2% per degree Celsius increase in temperature.
2. Above +5°C [13°F], the output capacity has to be reduced by 3.33% per degree Celsius increase in temperature.

If the output capacity is not reduced when $T_{\text{Amb}} > 55°C$ [131°F], the device will engage thermal protection by switching off, i.e., the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.

FOR TECHNICAL ASSISTANCE CALL 770-844-4200

Surrounding Air Temperature (°C) vs. Percentage of Max Load (%)

For the latest prices, please check AutomationDirect.com.
RHINO PSV24-50S Power Supply

Technical Specifications

Input (AC)
- **Nominal input voltage / frequency**: 100-240 VAC / 50-60 Hz
- **Voltage range**: 85-264 VAC
- **Frequency**: 47-63 Hz
- **Nominal current**: < 1.0 A @ 115VAC, < 0.6 A @ 230VAC
- **Inrush current limitation (+25°C, cold start)**: < 35A @ 115VAC, < 60A @ 230VAC
- **Mains buffering at nominal load (typ.)**: 90ms typ. @ 115VAC (100% load)
- **Turn-on time**: < 3s @ 115VAC, < 1.5 s @ 230VAC (100% load)
- **Internal fuse**: T 3.15 A / 250V (non-replaceable)
- **Recommended backup protection**: 20A B- or 13A C- characteristic circuit breaker
- **Leakage current**: < 1mA @ 240VAC

Output (DC)
- **Nominal output voltage \(U_{out} \)/ tolerance**: 24VDC ± 2 %
- **Voltage adjustment range**: 24-28 VDC (maximum power \(\leq 50W \))
- **Nominal current**: 2.1 A
- **Derating**:
 - \(H_{0} \) to \(H_{6} \)
 - \(-10^\circC \) to \(-20^\circC \) (2%/^\circC\), > \(55^\circC \) (3.33%/^\circC\) in vertical orientation
- **Startup with capacitive loads**: Max. 3,000μF
- **Max. power dissipation idling / nominal load approx.**: 6 W / 7W
- **Efficiency at 100% load**: 86.0% typ. @ 115VAC, 88.0% typ. @ 230VAC
- **PARD (20MHz) at +25°C, 100% load**: < 75 mVpp
- **Parallel operation**: PSB60-REM20S / PSB60-REM40S or with ORing Diode

General Data
- **Type of housing**: Plastic (PC), enclosed
- **LED signals**: Green LED DC OK
- **MTBF**: > 350,000 hrs. as per Telcordia
- **Dimensions (L x W x H)**: 75mm x 30mm x 89.5 mm (2.95 in x 1.18 in x 3.52 in) (See www.AutomationDirect.com for complete engineering drawings.)
- **Weight**: 0.18 kg (6.3 oz)
- **Connection method**: Screw connection
- **Stripping length**: 4-5mm (0.16-0.20 in)
- **Operating temperature (surrounding air temperature)**: -20°C to +70°C [-4°F to +158°F] (Refer to Fig. 6)
- **Storage temperature**: -40°C to +85°C [-40°F to +185°F]
- **Humidity at +25°C, no condensation**: 5 to 95% RH
- **Vibration**:
 - Operating: IEC60068-2-6, Sine Wave: 10Hz to 500Hz @ 19.6m/s²; displacement of 0.35 mm, 60min per axis for all X, Y, Z directions
 - Non-Operating: IEC60068-2-6, Random: 5Hz to 500Hz (2.09 Grms); 20 min. per axis for all X, Y, Z directions
- **Shock**:
 - Operating: IEC60068-2-27, Half Sine Wave: 10G for a duration of 11ms, shock for 1 direction (X axis)
 - Non-Operating: IEC60068-2-27, Half Sine Wave: 50G for a duration of 11ms, 3 shocks for each 3 directions
- **Pollution degree**: 2
- **Altitude (operating)**: < 2000m

Certification and Standards
- **Safety entry low voltage**: SLLV (EN60601)
- **Electrical safety (of information technology equipment)**: UL/ULC-UL listed to UL60950-1 and CSA C22.2 No. 60950-1 (File No. E198298); CE scheme to IEC60950-1, Limited Power Source (LPS)
- **Industrial control equipment**: UL/ULC-UL listed to UL508 and CSA C22.2 No. 107.1-01 (File No. E197592)
- **Class 2 power supply**: UL/ULC-UL listed to UL508 and CSA C22.2 No. 107.1-01 (File No. E197592)
- **CE**: In conformance with EMC directive 2014/30/EU and Low Voltage Directive 2014/35/EU
- **Component power supply for general use**: EN61204-3
- **Immunity**: EN55024, EN55032, EN55011, EN50160-6-1, EN50160-6-2
- **Emission**: EN55032, EN55011, EN50160-6-3, EN51600-6-3, EN51600-6-4

Safety and Protection
- **Surge voltage protection against internal surge voltages**: No
- **Isolation voltage**:
 - Input / output: 3kVAC
 - Input / PE: 3kVAC
 - Output / PE: 0.5 kVAC
- **Protection degree**: IP20
- **Safety class**: Class I with PE connection
RHINO PSV24-100S Power Supply

READ INSTRUCTIONS BEFORE INSTALLING OR OPERATING THIS DEVICE. KEEP FOR FUTURE REFERENCE.

1. Safety instructions
 - Switch main power off before connecting or disconnecting the device. Risk of explosion!
 - To guarantee sufficient convection cooling, please keep a distance of >40mm above and >30mm below the device as well as a lateral distance of >25mm to other cold source or heat source.
 - Note that the enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Risk of burns!
 - The main power must be turned off before connecting or disconnecting wires to the terminals!
 - Do not introduce any objects into the unit!
 - Dangerous voltage present for at least 5 minutes after disconnecting all sources of power.
 - The power supplies are built-in units and must be installed in a cabinet or room (condensation free environment and indoor location) that is relatively free of conductive contaminants.
 - The unit must be installed in an IP40 enclosure or cabinet in the final installation.
 - CAUTION: FOR USE IN A CONTROLLED ENVIRONMENT.

2. Device description (Fig. 1)
 (1) Input terminal block connector
 (2) Output terminal block connector
 (3) DC voltage adjustment potentiometer
 (4) DC OK LED (green)
 (5) Universal mounting rail system

3. Mounting (Fig. 2)
 The power supply unit can be mounted on 35mm DIN rails in accordance with EN60715. The device should be installed with input terminal block on the bottom. Each device is delivered ready to install.

4. Dismounting (Fig. 3)
 To uninstall, use a flat screwdriver to pull or slide down the latch as shown in Fig. 3. Then slide the PSU in the opposite direction, release the latch and pull out the PSU from the rail.

5. Connection
 The terminal block connectors allow easy and fast wiring.
 You can use flexible (stranded wire) or solid cables with cross sections:

<table>
<thead>
<tr>
<th>Electrical Connections and Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stranded / Solid</td>
</tr>
<tr>
<td>mm²</td>
</tr>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output</td>
</tr>
</tbody>
</table>

 To secure reliable and shock proof connections, the stripping length should be 4-5mm (see Fig. 4 (1)). Please ensure that wires are fully inserted into the connecting terminals as shown in Fig. 4 (2).

 In accordance to EN60950 / UL60950, flexible cables require ferrules.

 Use appropriate copper cables that are designed to sustain operating temperature of at least 60°C/140°F for USA or at least 90°C for Canada.

 5.1. Input connection (Fig. 1, Fig. 5)
 Use L, N and GND connections of input terminal connector (see Fig. 1 (1)) to establish the 100-240 VAC connection. Typical connection methods are shown in Figure 5.

 The unit is protected with an internal fuse (not replaceable) at L pin and it has been tested and approved on 20A (UL) and 16A (IEC) branch circuits without additional protection device. An external protective device is only required if the supplying branch has an ampacity greater than above. Thus, if an external protective device is necessary, or utilized, a minimum value of 20A B- or 10A C- characteristic breaker should be used.

 ! Warning: The internal fuse must not be replaced by the user.

 5.2. Output connection (Fig. 1 (2))
 Use the "+" and "-" screw connections to establish the 24VDC connection. The output provides 24VDC. The output voltage can be adjusted from 22 to 24 VDC on the potentiometer. The green LED DC OK displays correct function of the output (Fig. 1 (4)). The device has a short circuit and overload protection and an overvoltage protection limited to 30-34.8 VDC.

 5.3. Output characteristic curve
 The device functions normal under operating line and load conditions. In the event of a short circuit or overload the output voltage and current collapses (Ip > 110-150%). The secondary voltage is reduced and bounces until short circuit or overload on the secondary side has been removed.

 5.4. Thermal behavior (Fig. 6)
 In the case of ambient temperatures:
 1. At -10°C to -20°C [-14°F to -4°F], the output capacity has to be reduced by 2% per degree Celsius increase in temperature.
 2. Above +50°C [122°F], the output capacity has to be reduced by 3.3% per degree Celsius increase in temperature.

 If the output capacity is not reduced when Tamb > +50°C [122°F], the device will engage thermal protection by switching off, i.e., the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.

 FOR TECHNICAL ASSISTANCE CALL 770-894-4200
RHINO PSV24-100S Power Supply

Technical Specifications

Input (AC)
- **Nominal input voltage / frequency**: 100-240 VAC / 50-60 Hz
- **Voltage range**: 85-264 VAC
- **Frequency**: 47-63 Hz
- **Nominal current**: < 1.2 A @ 115VAC, < 0.6 A @ 230VAC
- **Inrush current limitation (+25°C, cold start)**: < 35A @ 115VAC, < 60A @ 230VAC
- **Mains buffering at nominal load (typ.)**: 25ms typ. @ 115VAC (100% load), 50ms typ. @ 230VAC (100% load)
- **Turn-on time**: < 3s @ 115VAC, < 1.5s @ 230VAC (100% load)
- **Internal fuse**: T 3.15 A / 250V (non-replaceable)
- **Recommended backup protection**: 20A B- or 10A C- characteristic circuit breaker
- **Leakage current**: < 1mA @ 240VAC

Output (DC)
- **Nominal output voltage Uo / tolerance**: 24VDC ± 2%
- **Voltage adjustment range**: 22-24 VDC (maximum power ≤ 91.2 W)
- **Nominal current**: 3.8 A
- **Dropout**: Refer to Fig. 6
- **Startup with capacitive loads**: Max. 3,000μF
- **Max. power dissipation idling / nominal load**: approx. 0.4 W / 10W
- **Efficiency at 100% load**: 87.0% typ. @ 115VAC, 89.0% typ. @ 230VAC
- **PARD (20MHz) at +25°C, 100% load**: < 75 mVpp
- **Parallel operation**: PSB60-REM20S / PSB60-REM40S or with ORing Diode

General Data
- **Type of housing**: Plastic (PC), enclosed
- **LED signals**: Green LED DC OK
- **MTBF**: > 350,000 hrs. as per Telcordia
- **Dimensions (L x W x H)**: 75mm x 45mm x 100mm (2.95 in x 1.77 in x 3.94 in) (See www.AutomationDirect.com for complete engineering drawings.)
- **Weight**: 0.325 kg [11.5 oz]
- **Connection method**: Screw connection
- **Stripping length**: 4-5mm [0.16-0.20 in]
- **Operating temperature (surrounding air temperature)**: -20°C to +70°C [-4°F to +158°F] (Refer to Fig. 6)
- **Storage temperature**: -40°C to +85°C [-40°F to +185°F]
- **Humidity at +25°C, no condensation**: 5 to 95% RH
- **Vibration**: Operating: EC60068-2-6, Sine Wave: 10Hz to 500Hz @ 19.6m/s²; displacement of 0.35 mm, 60min per axis for all X, Y, Z directions
 - Non-Operating: EC60068-2-6, Random: 5Hz to 500Hz (2.09 Grms); 20 min. per axis for all X, Y, Z directions
- **Shock**: Operating: EC60068-2-27, Half Sine Wave: 10G for a duration of 11ms, shock for 1 direction (X axis)
 - Non-Operating: EC60068-2-27, Half Sine Wave: 50G for a duration of 11ms, 3 shocks for each 3 directions
- **Pollution degree**: 2
- **Altitude (operating)**: 2000m

Certification and Standards
- **Safety entry low voltage**: SELV (EN60950)
- **Electrical safety (of information technology equipment)**: UL/C-UL recognized to UL60950-1 and CSA C22.2 No. 60950-1 (File No. E198298), CB scheme to IEC60950-1, Limited Power Source (LPS)
- **Industrial control equipment**: UL/C-UL listed to UL508 and CSA C22.2 No. 107.1-01 (File No. E197592)
- **Class 2 power supply**: UL/C-UL listed to UL508 and CSA C22.2 No. 107.1-01 (File No. E197592)
- **CE**: In conformance with EMC directive 2014/30/EU and Low Voltage Directive 2014/35/EU
- **Component power supply for general use**: EN61204-3
- **Immunity**: EN55024, EN61000-6-1, EN61000-6-2 (EN61000-4-2, 3, 4, 5, 6, 8, 11)
- **Emission**: EN55032, EN55011, EN61000-3-3, EN61000-3-2, EN61000-6-4

Safety and Protection
- **Surge voltage protection against internal surge voltages**: No
- **Isolation voltage**: Input / output: 3kVAC, Input / PE: 1.5 kVAC, Output / PE: 0.5 kVAC
- **Protection degree**: IP20
- **Safety class**: Class I with PE connection

1st Edition, 01/2019
For the latest prices, please check AutomationDirect.com.

RHINO PSV24-120S Power Supply

READ INSTRUCTIONS BEFORE INSTALLING OR OPERATING THIS DEVICE.
KEEP FOR FUTURE REFERENCE.

1. Safety instructions
- Switch main power off before connecting or disconnecting the device. Risk of explosion!
- If the unit is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
- To guarantee sufficient convection cooling, please keep a distance of 50mm above and 18cm below the device as well as a lateral distance of 10mm to other units.
- Note that the enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Risk of burns!
- The main power must be turned off before connecting or disconnecting wires to the terminals!
- Do not introduce any objects into the unit!
- Dangerous voltage present for at least 5 minutes after disconnecting all sources of power.
- The power supplies are built-in units and must be installed in a cabinet or room (non-consumation free environment and indoor location) that is relatively free of conductive contaminants.
- The unit must be installed in an IP54 enclosure or cabinet in the final installation.

2. CAUTION: FOR USE IN A CONTROLLED ENVIRONMENT.

2. Device description (Fig. 1)
(1) Input terminal block connector
(2) Output terminal block connector
(3) DC voltage adjustment potentiometer
(4) DC OK LED (green)
(5) Universal mounting rail system

3. Mounting (Fig. 2)
The power supply unit can be mounted on 35mm DIN rails in accordance with EN60715. For vertical mounting, the device should be installed with input terminal block on the bottom.
Each device is delivered ready to install.
Snap on the DIN rail as shown in Fig. 2:
1. Tilt the unit slightly upwards and put it onto the DIN rail.
2. Push downwards until stopped.
3. Press against the bottom front side for locking.
4. Shake the unit slightly to ensure that it is secured.

4. Dismounting (Fig. 3)
To uninstall, use a flat screwdriver to pull or slide down the latch as shown in Fig. 3. Then slide the PSU in the opposite direction, release the latch and pull out the PSU from the rail.

5. Connection
The terminal block connectors allow easy and fast wiring.
You can use flexible (stranded wire) or solid cables with cross sections:

- You can use flexible (stranded wire) or solid cables with cross sections:

6. Electrical Connections and Wire Size

<table>
<thead>
<tr>
<th>Electrical Connections and Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm² / AWG</td>
</tr>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output</td>
</tr>
</tbody>
</table>

To secure reliable and shock proof connections, the stripping length should be 7mm (see Fig. 4 (1)). Please ensure that wires are fully inserted into the connecting terminals as shown in Fig. 4 (2). All wire strands must be fully inserted into the terminals with the screws securely fastened in order to ensure safety and maximum contact.

In accordance to EN60950 / UL60950, flexible cables require ferrules.
Use appropriate copper cables that are designed to sustain operating temperature of at least 60°C/140°F or more to fulfill UL requirements.

5.1. Input connection (Fig. 1, Fig. 5)
Use L, N and GND connections of input terminal connector (see Fig. 1 (1)) to establish the 100-240 VAC connection. Typical connection methods are shown in Figure 5.
The unit is protected with an internal fuse (not replaceable) at L pin and it has been tested and approved on 20A (UL) and 16A (IEC) branch circuits without additional protection device. An external protection device is only required if the supplying branch has an ampacity greater than above.

5.2. Output connection (Fig. 1 (2))
Use the “+” and “−” screw connections to establish the 24VDC connection. The output provides 24VDC.
The output voltage can be adjusted from 22 to 28 VDC on the potentiometer. The green LED DC OK displays the correct function of the output (Fig. 1 (4)). The device has a short circuit and overload protection and an overvoltage protection limited to 28.8-35.2VDC.

5.3. Output characteristic curve
The device functions normal under operating line and load conditions. In the event of an overload (Io = 105-150%) the output voltage will start to droop until overload has been removed.

5.4. Thermal behavior (Fig. 6)
In the case of ambient temperatures:
1. At -10°C to -20°C (14°F to -4°F), the output capacity must be reduced by 2% per °C temperature increase.
2. Above +40°C [104°F] (115VAC), the output capacity must be reduced by 1.67% per degree Celsius temperature increase.
3. Above +50°C [122°F] (230VAC), the output capacity must be reduced by 2.5% per degree Celsius temperature increase.
If the output capacity is not reduced when TAmb > 40°C (115VAC) or > 50°C (230VAC), the device will engage thermal protection by switching off, i.e., the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.

FOR TECHNICAL ASSISTANCE CALL 770-894-4200

For the latest prices, please check AutomationDirect.com.
RHINO PSV24-120S Power Supply

Technical Specifications

Input (AC)
- **Nominal input voltage / frequency**: 100-240 VAC / 50-60 Hz
- **Voltage range**: 85-264 VAC
- **Frequency**: 47-63 Hz
- **Nominal current**: 2.2 A typ. @ 115VAC, 1.2 A typ. @ 230VAC
- **Inrush current limitation (+25°C, cold start)**: 20A typ. @ 115VAC, 40A typ. @ 230VAC
- **Mains buffering at nominal load (typ.)**: 20ms typ. @ 115VAC (100% load), 90ms typ. @ 230VAC (100% load)
- **Turn-on time**: 200ms typ. @ 115VAC & 230VAC (100% load)
- **Internal fuse**: 1 4A / 250V (non-replaceable)
- **Leakage current**: < 0.25 mA @ 264VAC

Output (DC)
- **Nominal output voltage U_N / tolerance**: 24VDC ± 2%
- **Voltage adjustment range**: 22-28 VDC (maximum power ≤ 120W)
- **Output current**: 5A
- **Derating**: Refer to Fig. 6
 - -10°C to +20°C (2%/°C), > 40°C (1.67%/°C) @ 115VAC
 - -10°C to +20°C (2%/°C), > 50°C (2.5%/°C) @ 230VAC
- **Max. power dissipation idling / nominal load approx.**: 0.65 W / 13.3 W
- **PARD (20MHz) at 100% load**: < 120 mVpp
- **Parallel operation**: PSB60-REM20S / PSB60-REM40S or with ORing Diode

General Data
- **Type of housing**: SGCC (Case Cover) / Aluminum (Case Chassis)
- **LED signals**: Green LED DC OK
- **MTBF**: > 700,000 hrs. as per Telcordia
- **Dimensions (L x W x H)**: 123.6 mm x 40mm x 117.6 mm [4.87 in x 1.57 in x 4.63 in] (See www.AutomationDirect.com for complete engineering drawings.)
- **Weight**: 0.54 kg [19 oz]
- **Connection method**: Screw connection
- **Stripping length**: 7mm [0.28 in]
- **Operating temperature (surrounding air temperature)**: -20°C to +70°C [-4°F to +158°F] (Refer to Fig. 6)
- **Storage temperature**: -40°C to +85°C [-40°F to +185°F]
- **Humidity at +25°C, no condensation**: 5 to 95% RH
- **Vibration**: Operating: IEC60068-2-6, Sine Wave: 10Hz to 500Hz | 11Hz to 180Hz | (200G peak), 10min per cycle, 10min per direction, 10 min per axis for all X, Y, Z directions
 - Non-Operating: IEC60068-2-27, Half Sine Wave: 10G for a duration of 11ms, shock for 1 direction (X axis)
- **Shock**: Up to 13G peak, 3 shocks for each 3 directions
- **Pollution degree**: 2
- **Altitude (operating)**: 2000m for industrial application
 - 5000m for ITE application

Certification and Standards
- **Safety entry low voltage**: SELV (EN60950)
- **Electrical safety (of information technology equipment)**: UL/C-UL recognized to UL60950-1 and CSA C22.2 No. 60950-1 (File No. E198298), CB scheme to IEC60950-1
- **Industrial control equipment**: UL/C-UL listed to UL508 and CSA C22.2 No.107.1-01 (File No. E197562)
- **CE**: In conformance with EMC directive 2014/30/EU and Low Voltage Directive 2014/35/EU
- **Component power supply for general use**: EN61204-3
- **Immunity**: EN61000-6-1, EN61000-6-2, EN61000-6-3, EN61000-6-4
- **Voltage Sag Immunity**: SEMI F47 – 0706 @ 200VAC

RoHS Compliant
- **Yes**

Safety and Protection
- **Transient surge voltage protection**: Varistor
- **Current limitation at short-circuits approx.**: I_{limp} = 105-150% or P_{limp} typically
- **Surge voltage protection against internal surge voltages**: Yes
- **Isolation voltage**: Input / output: 3kVAC, Input / PE: 2kVAC, Output / PE: 0.5 kVAC
- **Protection degree**: IP20
- **Safety class**: Class I with PE connection

For the latest prices, please check AutomationDirect.com.
RHINO PSV24-240S Power Supply

READ INSTRUCTIONS BEFORE INSTALLING OR OPERATING THIS DEVICE. KEEP FOR FUTURE REFERENCE.

1. **Safety instructions**
 - Switch main power off before connecting or disconnecting the device. Risk of explosion!
 - If the unit is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
 - To guarantee sufficient convection cooling, please keep a distance of 50mm above and 18cm below the device as well as a lateral distance of 10mm to other units.
 - Note that the enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Risk of burns!
 - The main power must be turned off before connecting or disconnecting wires to the terminals!
 - Do not introduce any objects into the unit!
 - Dangerous voltage present for at least 5 minutes after disconnecting all sources of power.
 - The power supplies are built in units and must be installed in a cabinet or room (condensation free environment and indoor location) that is relatively free of conductive contaminants.
 - The unit must be installed in an IP54 enclosure or cabinet in the final installation.
 - **CAUTION: FOR USE IN A CONTROLLED ENVIRONMENT.**

2. **Device description (Fig. 1)**
 1. Input terminal block connector
 2. Output terminal block connector
 3. DC voltage adjustment potentiometer
 4. DC OK LED (green)
 5. Universal mounting rail system

3. **Mounting (Fig. 2)**
 The power supply unit can be mounted on 35mm DIN rails in accordance with EN60715. For vertical mounting, the device should be installed with input terminal block on the bottom.
 Each device is delivered ready to install. Snap on the DIN rail as shown in Fig 2:
 1. Tilt the unit slightly upwards and put it onto the DIN rail.
 2. Push downwards until stopped.
 3. Press against the bottom front side for locking
 4. Shake the unit slightly to ensure that it is secured

4. **Dismounting (Fig. 3)**
 To unmount, use a flat screwdriver to pull or slide down the latch as shown in Fig 3. Then slide the PSU in the opposite direction, release the latch and pull out the PSU from the rail.

5. **Connection**
The terminal block connectors allow easy and fast wiring.

 You can use flexible (stranded wire) or solid cables with cross sections:
 - The terminal block connectors allow easy and fast wiring.
 - The terminal block connectors allow easy and fast wiring.
 - The terminal block connectors allow easy and fast wiring.

 Electrical Connections and Wire Size

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Cross-section</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1.3-3.3 mm²</td>
<td>16-12 AWG</td>
<td>1.01 lb-in</td>
</tr>
<tr>
<td>Output 1.3-3.3 mm²</td>
<td>16-12 AWG</td>
<td>0.68 lb-in</td>
</tr>
</tbody>
</table>

To secure reliable and shock proof connections, the stripping length should be 7mm (see Fig 4 (1)).

Ensure that wires are fully inserted into the connecting terminals as shown in Fig 4 (2). All wire strands must be fully inserted into the terminals with the screws securely fastened in order to ensure safety and maximum contact.

In accordance to EN60950 / UL60950, flexible cables require ferrules.

Use Appropriate copper cables that are designed to sustain operating temperature at least 60°C/122°F or more to fulfill UL requirements.

5.1. **Input connection (Fig. 1, Fig. 5)**
 - Use L, N and GND connections of input terminal connector (see Fig. 1 (1)) to establish the 100-240 VAC connection. Typical connection methods are shown in Figure 5.
 - The unit is protected with an internal fuse (not replaceable) at L pin and it has been tested and approved on 20A (UL) and 16A (IEC) branch circuits without additional protection device. An external protection device is only required if the supplying branch has an ampacity greater than above.

 5.2. **Output connection (Fig. 1 (2))**
 - Use the “+” and “-” screw connections to establish the 24VDC connection. The output provides 24VDC.
 - The output voltage can be adjusted from 22 to 28 VDC on the potentiometer. The green LED DC OK displays correct function of the output (Fig. 1 (4)). The device has a short circuit and overload protection and an overvoltage protection limited to 28.8-35.2 VDC.

5.3. **Output characteristic curve**
The device functions normal under operating line and load conditions. In the event of an overload (Io = 105-150%) the output voltage will start to droop until overload has been removed.

5.4. **Thermal behavior (Fig. 6)**
In the case of ambient temperatures:
 1. Above +40°C [109°F] (115VAC), the output capacity has to be reduced by 1.67% per degree Celsius increase in temperature.
 2. Above +50°C [122°F] (230VAC), the output capacity has to be reduced by 2.5% per degree Celsius increase in temperature.

 If the output capacity is not reduced when Ta > 40°C [109°F] (115VAC) or > 50°C [122°F] (230VAC), the device will engage thermal protection by switching off; i.e., the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.

FOR TECHNICAL ASSISTANCE CALL 770-894-4200
RHINO PSV24-240S Power Supply

Technical Specifications

Input (AC)
- **Nominal input voltage / frequency**: 100-240 VAC / 50-60 Hz
- **Voltage range**: 85-264 VAC
- **Frequency**: 47-63 Hz
- **Nominal current**: 2.8 A typ. @ 115VAC, 1.4 A typ. @ 230VAC
- **Inrush current limitation (+25°C, cold start)**: 20A typ. @ 115VAC, 40A typ. @ 230VAC
- **Mains buffering at nominal load (typ.)**: 10ms typ. @ 115VAC (100% load), 16ms typ. @ 230VAC (100% load)
- **Turn-on time**: 1000ms typ. @ 115VAC & 230VAC (100% load)
- **Internal fuse**: T 6.3 A / 250V (non-replaceable)
- **Leakage current**: < 1mA @ 264VAC

Output (DC)
- **Nominal output voltage Uo / tolerance**: 24VDC ± 2 %
- **Voltage adjustment range**: 22-28 VDC (maximum power ≤ 240W)
- **Output current**: 10A
- **Derating**: Refer to Fig. 6
 - > 40°C (1.67%/°C) @ 115VAC (90-229 VAC)
 - > 50°C (2.5%/°C) @ 230VAC (230-264 VAC)
- **Startup with capacitive loads**: Max. 8,000μF
- **Efficiency at 100% load**: 88.0% typ. @ 115VAC, 90.0% typ. @ 230VAC
- **PARD (20MHz) at 100% load**:
 - ≤ 120mVpp @ -10°C to +10°C
 - ≤ 240mVpp @ -20°C to +10°C
- **Parallel operation**: PSB60-REM20S / PSB60-REM40S or with ORing Diode

General Data
- **Type of housing**: SGCC (Case Cover) / Aluminum (Case Chassis)
- **LED signals**: Green LED DC OK
- **MTBF**: > 700,000 hrs. as per Telcordia
- **Dimensions (L x W x H)**: 123.6 mm x 60mm x 117.6 mm (4.87 in x 2.36 in x 4.63 in) [See www.AutomationDirect.com for complete engineering drawings.]
- **Weight**: 0.80 kg [28 oz]
- **Connection method**: Screw connection
- **Stripping length**: 7mm (0.28 in)
- **Operating temperature (surrounding air temperature)**: -20°C to +70°C [-4°F to +158°F]
- **Storage temperature**: -40°C to +85°C [-40°F to +185°F]
- **Humidity at +25°C, no condensation**: 5 to 95% RH
- **Vibration**: Operating: IEC60068-2-6, Sine Wave: 10Hz to 500Hz @ 19.6m/s² (2G peak); 10min per cycle, 60min for X direction Non-Operating: IEC60068-2-6, Random: 5Hz to 500Hz (2.09 Grms); 20 min. per axis for all X, Y, Z directions
- **Shock**: Operating: IEC60068-2-27, Half Sine Wave: 10G for a duration of 11ms, shock for 1 direction (X axis)
 - Non-Operating: IEC60068-2-27, Half Sine Wave: 5G for a duration of 11ms, 3 shocks for each 3 directions
- **Pollution degree**: 2
- **Altitude (operating)**: 2000m for industrial application
 - 5000m for ITE application

Certification and Standards
- **Safety entry low voltage**: SELV (EN60950)
- **Electrical safety (of information technology equipment)**: UL/ULC recognized to UL60950-1 and CSA C22.2 No. 60950-1 (File No. E198298), CB scheme to IEC60950-1
- **Industrial control equipment**: UL/ULC listed to UL508 and CSA C22.2 No.107.1-01 (File No. E197592)
- **CE**: In conformance with EMC directive 2014/30/EU and Low Voltage Directive 2014/35/EU
- **Component power supply for general use**: EN61204-3
- **Immuny**: EN55024, EN61000-6-1, EN61000-6-2 (EN61000-4-2, 3, 4, 5, 6, 8, 11, 12)
- **Emission**: EN55022, EN55011, EN61000-3-2, Class A, EN61000-6-3, EN61000-6-4
- **Voltage Sag Immunity**: SEMI F47 – 0706 @ 200VAC

Safety and Protection
- **Transient surge voltage protection**: Varistor
- **Current limitation at short-circuits approx.**: \(I_{lim} \) = 105-150% or \(P_{lim} \) typically
- **Surge voltage protection against internal surge voltages**: Yes
- **Isolation voltage**: Input / output Input / PE Output / PE
 - 3kVAC
 - 2kVAC
 - 0.5 kVAC
- **Protection degree**: IP20
- **Safety class**: Class I with PE connection

For the latest prices, please check AutomationDirect.com.
RHINO PSV24-480S Power Supply

READ INSTRUCTIONS BEFORE INSTALLING OR OPERATING THIS DEVICE. KEEP FOR FUTURE REFERENCE.

1. Safety instructions
- Switch main power off before connecting or disconnecting the device. Risk of explosion!
- If the unit is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
- To guarantee sufficient convection cooling, please keep a distance of 50mm above and 18cm below the device as well as a lateral distance of 10mm to other units.
- Note that the enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Risk of burns!
- The main power must be turned off before connecting or disconnecting wires to the terminals!
- Do not introduce any objects into the unit!
- Dangerous voltage present for at least 5 minutes after disconnecting all sources of power.
- The power supplies are built-in units and must be installed in a cabinet or room (condensation free environment and indoor location) that is relatively free of conductive contaminants.
- The unit must be installed in an IP54 enclosure or cabinet in the final installation.
- CAUTION: FOR USE IN A CONTROLLED ENVIRONMENT.

2. Device description (Fig. 1)
(1) Input terminal block connector
(2) Output terminal block connector
(3) DC voltage adjustment potentiometer
(4) DC OK LED (green)
(5) Universal mounting rail system

3. Mounting (Fig. 2)
The power supply unit can be mounted on 35mm DIN rails in accordance with EN60715. For vertical mounting, the device should be installed with input terminal block on the bottom. Each device is delivered ready to install. Snap on the DIN rail as shown in Fig. 2:
1. Tilt the unit slightly upwards and put it onto the DIN rail.
2. Push downwards until stopped.
3. Press against the bottom front side for locking
4. Shake the unit slightly to ensure that it is secured.

4. Dismounting (Fig. 3)
To uninstall, use a flat screwdriver to pull or slide down the latch as shown in Fig. 3. Then slide the PSU in the opposite direction, release the latch and pull out the PSU from the rail.

5. Connection
The terminal block connectors allow easy and fast wiring. You can use flexible (stranded wire) or solid cables with cross sections:

<table>
<thead>
<tr>
<th>Electrical Connections and Wire Size</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>AWG</td>
</tr>
<tr>
<td>Input</td>
<td>1.3-3.3</td>
</tr>
<tr>
<td>Output</td>
<td>1.3-3.3</td>
</tr>
</tbody>
</table>

To secure reliable and shock proof connections, the stripping length should be 7mm (see Fig. 4 (1)). Please ensure that wires are fully inserted into the connecting terminals as shown in Fig. 4 (2). All wire strands must be fully inserted into the terminals with the screws securely fastened in order to ensure safety and maximum contact.

In accordance to EN60950 / UL60950, flexible cables require ferrules. Use appropriate copper cables that are designed to sustain operating temperature of at least 60°C/145°C or more to fulfill UL requirements.

5.1. Input connection (Fig. 1, Fig. 5)
Use L, N and GND connections of input terminal connector (see Fig. 1 (1)) to establish the 100-240 VAC connection. Typical connection methods are shown in Figure 5.

The unit is protected with an internal fuse (not replaceable) at L pin and it has been tested and approved on 20A (UL) and 16A (IEC) branch circuits without additional protection device. An external protection device is only required if the supplying branch has an amperage greater than above.

5.2. Output connection (Fig. 1 (2))
Use the “+” and “-” screw connections to establish the 24VDC connection. The output provides 24VDC. The output voltage can be adjusted from 22 to 28 VDC on the potentiometer. The green LED DC OK displays correct function of the output (Fig. 1 (4)). The device has a short circuit and overload protection and an overvoltage protection limited to 28.8-35.2 VDC.

5.3. Output characteristic curve
The device functions normal under operating line and load conditions. In the event of an overload (Iol = 109-130%) the output voltage will start to droop until overload has been removed.

5.4. Thermal behavior (Fig. 6)
In the case of ambient temperatures:
1. Above +40°C [104°F] (115VAC), the output capacity has to be reduced by 1.67% per degree Celsius increase in temperature.
2. Above +65°C [122°F] (230VAC), the output capacity has to be reduced by 2.5% per degree Celsius increase in temperature.

If the output capacity is not reduced when \(T_{Amb} > 40°C [104°F] \) (115VAC) or \(> 50°C [122°F] \) (230VAC), the device will engage thermal protection by switching off, i.e., the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.

FOR TECHNICAL ASSISTANCE CALL 770-894-4200
Technical Specifications

Input (AC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal input voltage / frequency</td>
<td>100-240 VAC / 50-60 Hz</td>
</tr>
<tr>
<td>Voltage range</td>
<td>95-264 VAC</td>
</tr>
<tr>
<td>Frequency</td>
<td>47-53 Hz</td>
</tr>
<tr>
<td>Nominal current</td>
<td>5.4 A typ. @ 115VAC, 2.7 A typ. @ 230VAC</td>
</tr>
<tr>
<td>Inrush current limitation (+25°C, cold start)</td>
<td>40A typ. @ 115VAC, 80A typ. @ 230VAC</td>
</tr>
<tr>
<td>Mains buffering at nominal load (typ.)</td>
<td>10ms typ. @ 115VAC (100% load)</td>
</tr>
<tr>
<td>Turn-on time</td>
<td>1000ms typ. @ 115VAC & 230VAC (100% load)</td>
</tr>
<tr>
<td>Internal fuse</td>
<td>F 10 A / 250V (non-replaceable)</td>
</tr>
<tr>
<td>Leakage current</td>
<td>< 1mA @ 256VAC</td>
</tr>
</tbody>
</table>

Output (DC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal output voltage U<sub>IN</sub> / tolerance</td>
<td>24VDC ± 2 %</td>
</tr>
<tr>
<td>Voltage adjustment range</td>
<td>22-28 VDC (maximum power ≤ 480W)</td>
</tr>
<tr>
<td>Output current</td>
<td>20A</td>
</tr>
<tr>
<td>Derating</td>
<td>Refer to Fig. 6</td>
</tr>
<tr>
<td>Startup with capacitive loads</td>
<td>Max. 8,000μF</td>
</tr>
<tr>
<td>Max. power dissipation idling / nominal load approx.</td>
<td>5W @ 115VAC (10% load)</td>
</tr>
<tr>
<td>Efficiency at 100% load</td>
<td>85.0% typ. @ 115VAC, 88.0% typ. @ 230VAC</td>
</tr>
<tr>
<td>PARD (20MHz) at 100% load</td>
<td>< 120mVpp @ -10°C to +10°C</td>
</tr>
<tr>
<td></td>
<td>< 240mVpp @ -20°C to -10°C</td>
</tr>
<tr>
<td>Parallel operation</td>
<td>PSB60-REM40S or with ORing Diode</td>
</tr>
</tbody>
</table>

General Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of housing</td>
<td>SGCC (Case Cover) / Aluminum (Case Chassis)</td>
</tr>
<tr>
<td>LED signals</td>
<td>Green LED DC OK</td>
</tr>
<tr>
<td>MTBF</td>
<td>> 700,000 hrs. as per Telcordia</td>
</tr>
<tr>
<td>Dimensions (L x W x H)</td>
<td>123.6 mm x 85.5 mm x 128.5 mm [4.87 in x 3.37 in x 5.06 in] (See www.AutomationDirect.com for complete engineering drawings.)</td>
</tr>
<tr>
<td>Weight</td>
<td>1.30 kg [45.9 oz]</td>
</tr>
<tr>
<td>Connection method</td>
<td>Screw connection</td>
</tr>
<tr>
<td>Stripping length</td>
<td>7mm [0.28 in]</td>
</tr>
<tr>
<td>Operating temperature (surrounding air temperature)</td>
<td>-20°C to +70°C [-4°F to +158°F] (Refer to Fig. 6)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40°C to +85°C [-40°F to +185°F]</td>
</tr>
<tr>
<td>Humidity at +25°C, no condensation</td>
<td>5 to 95% RH</td>
</tr>
<tr>
<td>Vibration</td>
<td>Up to 10,000 vibrations / hr, 1/1000 vibrations / sec (≤ 50 vibrations / sec), 1/min per cycle, tolerance for X direction</td>
</tr>
<tr>
<td>Non-Operating: IEC60068-2-6, Random: 5Hz to 500Hz (2.09 Grms), 20 min. per axis for all X, Y, Z directions</td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td>Operating: IEC60068-2-27, Half Sine Wave: 100 for a duration of 11ms, shock for 1 direction (X axis)</td>
</tr>
<tr>
<td>Non-Operating: IEC60068-2-27, Half Sine Wave: 500 for a duration of 11ms, 3 shocks for each 3 directions</td>
<td></td>
</tr>
<tr>
<td>Pollution degree</td>
<td>2</td>
</tr>
<tr>
<td>Altitude (operating)</td>
<td>2000m for industrial application</td>
</tr>
<tr>
<td></td>
<td>5000m for ITE application</td>
</tr>
</tbody>
</table>

Certification and Standards

<table>
<thead>
<tr>
<th>Category</th>
<th>Standard / Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety entry low voltage</td>
<td>SELV (EN60950)</td>
</tr>
<tr>
<td>Electrical safety (of information technology equipment)</td>
<td>UL/C-UL recognized to UL60950-1 and CSA C22.2 No. 60950-1 (File No. E198298), CB scheme to IEC60950-1</td>
</tr>
<tr>
<td>Industrial control equipment</td>
<td>UL/C-UL listed to UL508 and CSA C22.2 No.107.1-01 (File No. E19792)</td>
</tr>
<tr>
<td>CE</td>
<td>In conformance with EMC directive 2014/30/EU and Low Voltage Directive 2014/35/EU</td>
</tr>
<tr>
<td>Component power supply for general use</td>
<td>EN61204-3</td>
</tr>
<tr>
<td>Immunity</td>
<td>EN65024, EN60100-6-1, EN60100-6-2, (EN61000-4-2, 3, 4, 5, 6, 8, 11, 12)</td>
</tr>
<tr>
<td>Emission</td>
<td>EN65032, EN55011, EN61000-3-2, Class A, EN61000-3-3, EN61000-6-3, EN61000-6-4</td>
</tr>
<tr>
<td>Voltage Sag Immunity</td>
<td>SEMI F47 – 0706 @ 200VAC</td>
</tr>
</tbody>
</table>

Safety and Protection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient surge voltage protection</td>
<td>Varistor</td>
</tr>
<tr>
<td>Current limitation at short-circuits approx.</td>
<td>100-130% or PE<sub>max</sub> typically (continuous current)</td>
</tr>
<tr>
<td>Surge voltage protection against internal surge voltages</td>
<td>Yes</td>
</tr>
<tr>
<td>Isolation voltage:</td>
<td>3kVAC / 2kVAC</td>
</tr>
<tr>
<td>Input / output</td>
<td>0.5 kVAC</td>
</tr>
<tr>
<td>Input / PE</td>
<td>0.5 kVAC</td>
</tr>
<tr>
<td>Protection degree</td>
<td>IP20</td>
</tr>
<tr>
<td>Safety class</td>
<td>Class I with PE connection</td>
</tr>
</tbody>
</table>

1st Edition, 01/2019
RHINO PSV48-120S Power Supply

READ INSTRUCTIONS BEFORE INSTALLING OR OPERATING THIS DEVICE. KEEP FOR FUTURE REFERENCE.

1. Safety instructions
 - Switch main power off before connecting or disconnecting the device. Risk of explosion!
 - If the unit is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
 - To guarantee sufficient convection cooling, please keep a distance of 50mm above and 18cm below the device as well as a lateral distance of 10mm to other units.
 - Note that the enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Risk of burns!
 - The main power must be turned off before connecting or disconnecting wires to the terminals!
 - Do not introduce any objects into the unit!
 - Dangerous voltage present for at least 5 minutes after disconnecting all sources of power.
 - The power supplies are built-in units and must be installed in a cabinet or room (condensation free environment and indoor location) that is relatively free of conductive contaminants.
 - The unit must be installed in an IP54 enclosure or cabinet in the final installation.

2. Device description (Fig. 1)
 - Input terminal block connector
 - Output terminal block connector
 - DC voltage adjustment potentiometer
 - DC OK LED (green)
 - Universal mounting rail system

3. Mounting (Fig. 2)
 The power supply unit can be mounted on 35mm DIN rails in accordance with EN60715. For vertical mounting, the device should be installed with input terminal block on the bottom. Each device is delivered ready to install.

4. Dismounting (Fig. 3)
 To uninstall, use a flat screwdriver to pull or slide down the latch as shown in Fig. 3. Then slide the PSU in the opposite direction, release the latch and pull out the PSU from the rail.

5. Connection
 The terminal block connectors allow easy and fast wiring.

 You can use flexible (stranded wire) or solid cables with cross sections:

<table>
<thead>
<tr>
<th>Electrical Connections and Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stranded / Solid mm²</td>
</tr>
<tr>
<td>Input</td>
</tr>
<tr>
<td>0.28 (0.12)</td>
</tr>
<tr>
<td>7mm (0.28in)</td>
</tr>
</tbody>
</table>

 To secure reliable and shock proof connections, the stripping length should be 7mm (see Fig 4 (1)). Please ensure that wires are fully inserted into the connecting terminals as shown in Fig 4 (2). All wire strands must be fully inserted into the terminals with the screws securely fastened in order to ensure safety and maximum contact.

 In accordance to EN60950 / UL60950, flexible cables require ferrules. Use appropriate copper cables that are designed to sustain operating temperature of at least 60°C/140°F or more to fulfill UL requirements.

5.1. Input connection (Fig. 1, Fig. 5)
 Use L, N and GND connections of input terminal connector (see Fig. 1 (1)) to establish the 100-240 VAC connection. Typical connection methods are shown in Figure 5.

 The unit is protected with an internal fuse (not replaceable) at L pin and it has been tested and approved on 20A (UL) and 16A (IEC) branch circuits without additional protection device. An external protection device is only required if the supplying branch has an ampacity greater than above.

 The internal fuse must not be replaced by the user.

5.2. Output connection (Fig. 1 (2))
 Use the “+” and “−” screw connections to establish the 48 VDC connection. The output provides 48 VDC. The output voltage can be adjusted from 44 to 56 VDC on the potentiometer. The green LED DC OK displays correct function of the output (Fig. 1 (4)). The device has a short circuit and overload protection and an overvoltage protection limited to 56-67.2 VDC.

5.3. Output characteristic curve
 The device functions normal under operating line and load conditions. In the event of an overload Pout(Δt = 105-150%) the output voltage will start to droop until overload has been removed.

5.4. Thermal behavior (Fig. 6)
 In the case of ambient temperature:
 - 1. At -10°C to 20°C (31°F to 68°F), the output capacity has to be reduced by 2% per degree Celsius increase in temperature.
 - 2. Above +40°C (104°F) (115VAC), the output capacity has to be reduced by 1.67% per degree Celsius increase in temperature.
 - 3. Above +60°C (140°F) (230VAC), the output capacity has to be reduced by 2.5% per degree Celsius increase in temperature.

 If the output capacity is not reduced when TAmb > 40°C (104°F) (115VAC) or > 50°C (122°F) (230VAC), the device will engage thermal protection by switching off, i.e., the output voltage will go into latch-off mode until the component temperature cools down and the AC power is recycled.

FOR TECHNICAL ASSISTANCE CALL 770-894-4200

1-800-633-0405

FOR THE LATEST PRICES, PLEASE CHECK AUTOMATIONDIRECT.COM.
RHINO PSV48-120S Power Supply

Technical Specifications

Input (AC)
- **Nominal input voltage / frequency**: 100-240 VAC / 50-60 Hz
- **Voltage range**: 85-264 VAC
- **Frequency**: 47-63 Hz
- **Nominal current**: 2.2 A typ. @ 115VAC, 1.2 A typ. @ 230VAC
- **Inrush current limitation (+25°C, cold start)**: 20A typ. @ 115VAC, 40A typ. @ 230VAC
- **Mains buffering at nominal load (typ.)**: 20ms typ. @ 115VAC (100% load), 90ms typ. @ 230VAC (100% load)
- **Turn-on time**: 200ms typ. @ 115VAC & 230VAC (100% load)
- **Internal fuse**: T4A / 250V (non-replaceable)
- **Leakage current**: < 0.25 mA @ 264VAC

Output (DC)
- **Nominal output voltage UN / tolerance**: 48VDC ± 2 %
- **Voltage adjustment range**: 44-56 VDC (maximum power ≤ 120W)
- **Output current**: 2.5 A
- **Derating**: Refer to Fig. 6
 - -10°C to -20°C (2%/°C) > 40°C (1.67%/°C) @ 115VAC
 - -10°C to -20°C (2%/°C) > 50°C (2.5%/°C) @ 230VAC
- **Startup with capacitive loads**: Max. 4,000μF
- **Max. power dissipation idling / nominal load**: approx. 1.21 W / 13.3 W
- **Efficiency at 100% load**: 89.0% typ. @ 115VAC, 90.0% typ. @ 230VAC
- **PARD (20MHz) at 100% load**: < 150 mVpp
- **Parallel operation**: PSB60-REM20S / PSB60-REM40S or with ORing Diode

General Data
- **Type of housing**: SGCC (Case Cover) / Aluminum (Case Chassis)
- **LED signals**: Green LED DC OK
- **MTBF**: > 700,000 hrs. as per Telcordia
- **Dimensions (L x W x H)**: 123.6 mm x 40mm x 117.6 mm [4.87 in x 1.57 in x 4.63 in] (See www.AutomationDirect.com for complete engineering drawings.)
- **Weight**: 0.54 kg [19 oz]
- **Connection method**: Screw connection
- **Stripping length**: 7mm [0.28 in]
- **Operating temperature (surrounding air temperature)**: -20°C to +70°C [-4°F to +158°F] (Refer to Fig. 6)
- **Storage temperature**: -40°C to +85°C [-40°F to +185°F]
- **Humidity at +25°C, no condensation**: 5 to 95% RH
- **Vibration**: Operating: IEC60068-2-6, Sine Wave: 10Hz to 500Hz @ 19.6m/s² (2G peak); 10min per cycle, 60min for X direction
 - Non-Operating: IEC60068-2-6, Random: 5Hz to 500Hz (2.09 Grms); 20 min. per axis for all X, Y, Z directions
- **Shock**: Operating: IEC60068-2-27, Half Sine Wave: 10G for a duration of 11ms, shock for 1 direction (X axis)
 - Non-Operating: IEC60068-2-27, Half Sine Wave: 50G for a duration of 11ms, 3 shocks for each 3 directions
- **Pollution degree**: 2
- **Altitude (operating)**: 2000m for industrial application
 - 5000m for ITE application

Certification and Standards
- **Safety entry low voltage**: SELV (EN60065)
- **Electrical safety (of information technology equipment)**: UL/C-UL recognized to UL60950-1 and CSA C22.2 No. 60950-1, CB scheme to IEC60695-1
- **Industrial control equipment**: UL/C-UL listed to UL508 and CSA C22.2 No.107.1-01 (File No. E197592)
- **CE**: In conformance with EMC directive 2014/30/EU and Low Voltage Directive 2014/35/EU
- **Component power supply for general use**: EN61204-3
- **Immunity**: EN55024, EN61000-6-1, EN61000-6-2 (EN61000-4-2, 3, 4, 5, 6, 8, 11, 12)
- **Emission**: EN55032, EN55011, EN61000-3-2 Class A, EN61000-3-3, EN61000-6-3, EN61000-6-4
- **Voltage Sag Immunity**: SEMI F47 – 0706 @ 200VAC

RoHS Compliant
- **Yes**

Safety and Protection
- **Transient surge voltage protection**: Varistor
- **Current limitation at short-circuits approx.**: \[i_{lim} = 105-150\% \text{ of } P_{max}\] typically
- **Surge voltage protection against internal surge voltages**: Yes
- **Isolation voltage**: Input / output: 3kVAC
 - Input / PE: 2kVAC
 - Output / PE: 0.5 kVAC
- **Protection degree**: IP20
- **Safety class**: Class I with PE connection

1st Edition, 01/2019

For the latest prices, please check AutomationDirect.com.