
PX-EIP1 \$244.00

The PX-EIP1 EtherNet/IP Bus Coupler server allows connection of up to 64 terminals per assembly, 255 terminals total with I/O bus expansion. The PX-EIP1 module has one RJ45 Ethernet 10/100 Base T port for connection to an Ethernet client. Use with the Protos X I/O System.

PX-EIP1 I/O Bus Specifications		
Supply Power for I/O Bus	24VDC (-15%/+20%)	
Input Current from Power Supply 70mA + (total I/O bus current) / 4		
Recommended Fuse 10A Max		
I/O Bus Current Supply	1000mA Max	
Number of Bus Terminals Supported	64 per assembly, 255 w/ I/O Bus Expansion (based on power budget)	
lumber of Discrete Inputs/Outputs 1020 Inputs and 1020 Outputs with 255 terminals		
Number of Analog Inputs/Outputs 128 total		
Maximum Number of Data Bytes* 512 Input Bytes and 512 Output Bytes		

^{*} Total number of terminals cannot exceed 512 input bytes and 512 output bytes.

PX-EIP1 Terminal Power Bus Specifications		
Supply Power for Terminal Bus 24VDC		
Maximum Current	10A	
Number of Power Contacts	3 (+24 VAC/VDC, 0V, PE)	

PX-EIP1 Ethernet Port Specifications		
Configuration DIP switches and PX-CFGSW software		
Protocol	EtherNet/IP (Supports Implicit Messaging only)	
Data Transfer Rates	10/100 Mbps (Auto-crossover)	
Maximum Cable Length	100m between coupler and switch	
Connector Type Ethernet, RJ45		
Recommended Cable Shielded, Twisted Pair, Cat5e		

PX-EIP1 General Specifications		
Operating Temperature	32° to 131°F (0° to 55 °C)	
Storage Temperature	-13° to 185°F (-25° to 85 °C)	
Relative Humidity	5% to 95%, non-condensing	
Environment Air	No corrosive gases permitted	
Mounting / Orientation Restrictions	35mm DIN rail / None	
Vibration	Conforms to EN 60068-2-6	
Shock	Conforms to EN 60068-2-27	
Noise Immunity	Conforms to EN 61000-6-2	
Noise Emission	Conforms to EN 61000-6-4	
Protection Class IP20		
Weight 100g		
Dimensions (WxHxD)	44 x 100 x 66.4 mm (1.73 x 3.94 x 2.61 in)	
Agency Approvals* UL/cUL File No. E157382, CE		

To obtain the most current agency approval information, see the Agency Approval Checklist section on the specific part number's web page.

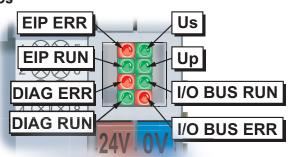
IMPORTANT!

Hot-Swapping Information

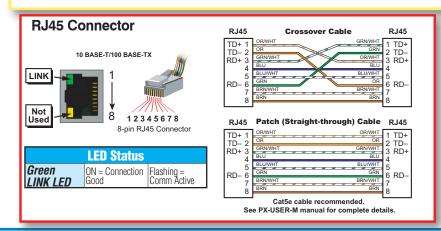
Note: This device cannot be Hot Swapped.

I/O **tFED-17**

Configuration Port


The Service Port connector is located under the flip-cover shown (previous page graphic). This port is used for communication with the software configuration tool. The software configuration tool auto-configures the EtherNet/IP addresses of the I/O terminals while the interface allows the user to:

• Run the configurator • View the configured EtherNet/IP addresses • Reboot the coupler • Configure first three octets of the IP address


Requires cable PX-USB-232, with a USB 2.0 type A connector for the PC and a 4-pin custom micro connector for the Bus Coupler. Works with PX-CFGSW configuration software.

Status LEDs

LED Descriptions			
LED	Status: ON	Status: OFF	
Red LED 1: EIP ERR	See PX-CFGSW Help file or PX-USER-M manual for codes.	No EIP Error	
Green LED 2: EIP Run	EIP Communication with Scanner (Client) Flashing: No active communication.	N/A	
Red LED 3: DIAG Err	See PX-CFGSW Help File or PX-USER-M manual for codes.	No DIAG Err	
Green LED 4: DIAG Run	Diagnostics active w/o error Flashing: Used in conjunction with Diag Error to determine fault.	N/A	
Green LED 5: Us	Bus coupler power On	Bus coupler power Off	
Green LED 6: Up	Terminal power On	Terminal power Off	
Green LED 7: I/O Bus RUN	7: I/O Bus RUN I/O bus data active (On or Flashing)		
Red LED 8: I/O Bus Err	I/O bus error, blinking code	No I/O bus error	

Address Selection - DIP Switches

The last octet or byte of the IP Address for the PX-EIP1 is set using the large bank of DIP switches on the front of the coupler. The smaller bank of DIP switches is used to select the type of address assignment (DHCP, BootP, firm setting).

The IP Address DIP switches set the fourth octet of the address and are arranged so that switch 1 corresponds to bit 0 (LSB) and switch 8 to bit 7 (MSB). The base address used is configured using the PX-CFGSW software tool. With the original factory settings, the IP Address is configured to the value 0.0.0.0 by default.

tFED-18 Universal Field I/O 1 - 8 0 0 - 6 3 3 - 0 4 0 5

System Considerations

The PX-EIP1 performs as an EtherNet/IP server in an EtherNet/IP network. Communication to the client is via an RJ45 Ethernet port. The maximum distance from the client to the PX-EIP1 is 330 feet (100 meters) using 24 AWG shielded, twisted pair Cat5e cable. It is highly recommended that a dedicated network be used for the Protos X system.

The PX-EIP1 Bus Coupler supports up to 64 terminals per assembly, 255 with Bus Expansion Couplers. A minimal assembly consists of a PX-EIP1 Bus Coupler, I/O Terminals and a Bus End Terminal.

The PX-EIP1 automatically assigns EtherNet/IP addresses for inputs and outputs to the image register. The maximum number of data is 512 bytes of input data and 512 bytes of output data, with up to 1020 inputs, 1020 outputs, and 128 analog inputs or outputs, when using bus expansion.

An **I/O Bus**, powered through the Bus Coupler, provides data communication across the terminal assembly via six contacts located on the side walls of the terminals. This bus also supplies low voltage power to the I/O terminals. The I/O Bus supply is rated at a maximum of 1000mA that must be taken into consideration when planning an assembly. Each terminal has an I/O bus current consump-

tion listing that can be used to determine the total I/O bus current. The maximum I/O bus current of the coupler must not be exceeded as there is no internal overcurrent protection.

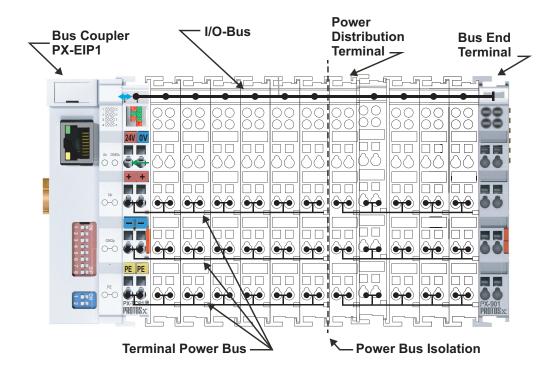
A **Terminal Power Bus** provides power for the I/O terminals via three contacts; 24V, OV and PE. A power source of 24VAC or 24VDC must be connected to the Bus Coupler from an external supply. The PE Bus is available for terminals that support PE connectivity.

A variety of Power Terminals are available for isolating, changing or supplying power to the I/O terminals.

For isolating voltages across the Terminal Power Bus, a **Power Separation Terminal (PX-908)** is used. This terminal separates the Terminal Power contacts but passes I/O Bus communication.

If additional 24VDC supply is required for terminal wiring, eight points of 24VDC power can be distributed from the Terminal Power Bus using a **Power Distribution Terminal (PX-949)**. This terminal must be mounted to the right of a terminal that passes 24VDC on the power bus. Both I/O Bus communication and terminal bus power are passed through to adjoining terminals.

To connect field power to the Terminal

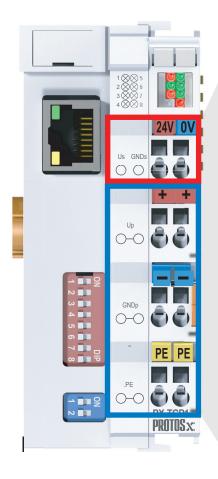

Power Bus, or to change from one voltage to another, Power Feed Terminals (PX-940 & PX-970) are used. Power Feed Terminals are available in 24VDC or 120–230VAC, and provide power to I/O Terminals located to the right of the Power Feed Terminal. This terminal passes I/O Bus communication. Power Terminals do not consume any addresses.

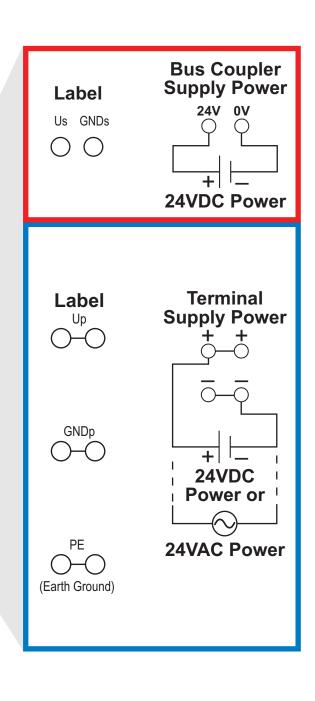
For expansion beyond a 64-terminal assembly, a **Bus Expansion End Terminal** (PX-902) is used in place of a standard **Bus End Terminal** (PX-901). A **Bus Expansion Coupler Terminal** (PX-903) is used at each expansion assembly in place of a PX-EIP1 Bus Coupler. Up to 31 Expansion couplers can be used in a group of assemblies. Connection is made between the Expansion Coupler Terminals via standard RJ45 Ethernet patch cable.


It is important to stay within the following three specifications:.

- Do not exceed the total number of 64 Terminals allowed per Assembly.
- Do not exceed the total number of 512 Input Bytes and 512 Output Bytes.
- 3. Do not exceed the Coupler I/O Bus Power Budget of 1000mA as there is no internal current protection.

For complete assembly instructions see the PX-USER-M manual.


PX-EIP1 Example Network Diagram


tFED-20 Universal Field I/O 1 - 8 0 0 - 6 3 3 - 0 4 0 5

PX-EIP1 Wiring Connections

Wire connection is made through a spring clamp style terminal. This terminal is designed for a single-conductor solid or stranded wire. Wire connection is made by firmly pushing the screwdriver into the screwdriver slot, inserting the wire into the wire slot and removing the screwdriver, locking the wire into position.

Wiring Sp	ecifications
Connection Type	Spring Clamp Terminals
Wire Gauge /Wire Cross- Section	28–14 AWG / 0.08–2.5 mm ²
	Use screwdriver width 2.5 mm (0.10) such as our TW-SD-MSL-2
Wire Stripping Length	8mm (5/16 in)

Power Budget Planning

Managing Power Resources

When determining the types and quantity of terminals you will be using, it is important to remember there is a defined amount of I/O Bus Current supplied from the Bus Coupler. There are also defined limits for each external source.

The chart on the next page indicates the power supplied and used by each Protos X component. The chart below shows an example of how to calculate the power used by your particular system. These charts should make it easy for you to determine if the devices you have chosen will operate within the power budget of your system configuration.

If the I/O terminals you have chosen exceed the maximum power available from the Bus Coupler, you may be able to resolve the problem by using expansion terminals.

Power Budget Example

The example on the right shows how to calculate the power budget for a typical Protos X system. This example is constructed using a PX-MOD Bus Coupler and six I/O Terminals. It is recommended you construct a similar table for your system. Follow the steps below to determine your power budget.

- 1. Using a chart similar to this one, fill in columns 1 and 2.
- 2. Using the tables on the next page enter the current supplied and current used by each device (column 3).
- Add together the current used by the system (row C) for column 3 and put the total in the row labeled "Maximum Current Required" (row D).
- 4. Subtract the calculated "Maximum Current Required" (row D), from the "Current Supplied" and place the difference in the row labeled "Remaining Current Available" (row E).
- 5. If "Maximum Current Required" is greater than "Current Supplied" in column 3, the power budget will be exceeded. It will be unsafe to use this configuration, and you will need to restructure your I/O configuration.

A	Column 1	Column 2	Column 3
	Terminal	Terminal Type	I/O Bus (from Coupler)
В	CURRENT SUPPLIED		
	PX-MOD	Bus Coupler	1000mA
С	CURRENT REQUIRED		
	PX-144 PX-172-1 PX-322-1 PX-312 PX-244-1 PX-412	4 pt DC Discrete Input 2 pt AC Discrete Input 2 ch RTD Input 2 ch DC Analog Input 4 pt DC Discrete Output 2 ch DC Analog Output	5mA 3mA 60mA 65mA 9mA 75mA
D	Maximum Current Required		217mA
E	Remaining Current Available		783mA

tFED-22 Universal Field I/O 1 - 8 0 0 - 6 3 3 - 0 4 0 5

Power Requirements

Power Supplied and Consumed

These tables show the amount of power supplied by each of the Bus Couplers and the amount of power consumed by each I/O device. The Power Consumed chart lists how much power is drawn from the I/O Bus, Terminal Power Bus (externally supplied) and from the Load (when using output terminals). Use this information when calculating the power budget for your system.

Power Supplied		
Device 5V(mA) I/O Bus Supply		
Coupler		
PX-MOD	1000 Max	
PX-TCP1	1000 Max	
PX-TCP2	1750 Max	
PX-EIP1	1000 Max	
Bus Expansion Coupler		
PX-903	400 Max	

Power Consumed			
Device	5V(mA) from I/O Bus	(mA) from Terminal Power Bus	(mA) from Load
Discrete Input	Terminals		
PX-144	5	5	
PX-148	5	2 (plus load)	
PX-149	20	N/A	N/A
PX-172-1	3	6	
PX-172-2	3	6	
Discrete Outpu	ıt Terminals		
PX-244-1	9		30
PX-244-2	9	NI/A	30
PX-248	18	N/A	60 (plus load)
PX-249	45		35 (plus load)
Analog Input T	Terminals		
PX-302	60	N/A	
PX-304	85	Load	
PX-308	105	Load	N/A
PX-312	65	N/A	IVA
PX-314	100	N/A	
PX-318	140	N/A	
RTD/Thermoco	ouple Input Terminals		
PX-322-1	60		
PX-324-1	60		
PX-332-J	65	NI/A	NI/A
PX-334-J	75	N/A	N/A
PX-332-K	65		
PX-334-K	75		
Analog Output	Terminals		
PX-402	60		50 (plus load)
PX-404	20		60 (plus load)
PX-408	25	NI/A	50 (plus load)
PX-412	75	N/A	50 (plus load)
PX-414	75		50 (plus load)
PX-418	20		20
Relay Output 1	Terminals		
PX-272-1	10	ON resistance max $100 \text{m}\Omega$	NIZA
PX-272-2	80	(plus load)	N/A
Combination I	n/Out Terminals		
PX-549	25 (additional 3mA for inputs)	15 (plus load)	N/A

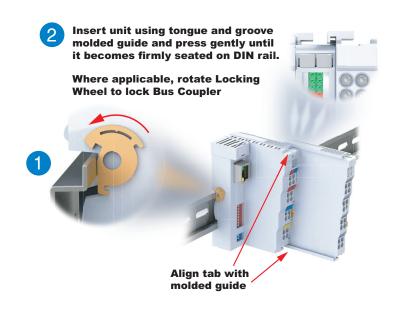
System Installation and Removal

Bus Coupler and Bus Terminal Installation

Bus Coupler Installation:

 Attach a Bus Coupler by snapping it onto 35mm DIN rail and securing it into position using the DIN rail locking wheel (where applicable) located on the left side of the coupler.


Bus Terminal Installation:


To add a bus terminal, insert unit onto right side of Bus Coupler using the tongue and groove at the top and bottom of the unit, pressing gently until it snaps onto the DIN rail.

A proper connection cannot be made by sliding the units together on the DIN rail. When correctly installed, no significant gap can be seen between the attached units. Bus connection is made through the six slide contacts located on the upper right side of the units. Add up to 64 bus terminals per Bus Coupler, including a bus end terminal.

Wiring Connections

Wire connection is made through a spring clamp style terminal. This terminal is designed for a single-conductor solid or stranded wire. Wire connection is made by firmly pushing the screwdriver into the screwdriver slot, inserting the wire into the wire slot and removing the screwdriver, locking the wire into position.

Wiring Specifications		
Connection Type Spring Clamp Terminals		
Wire Gauge	28–14 AWG (0.08–2.5 mm ²⁾	
Screwdriver Width	2.5 mm (0.10 in) such as P/N TW-SD-MSL-2	
Wire Stripping Length 8mm		

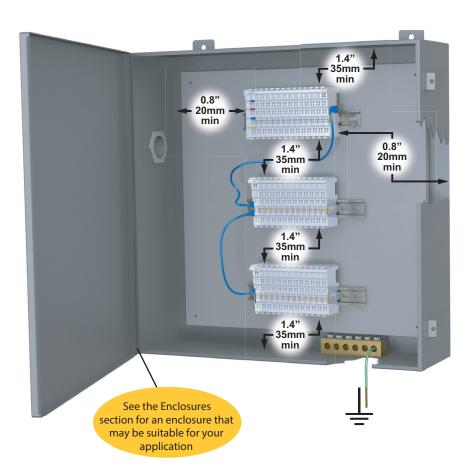
^{*} For Thermocouple terminals, thermocouple extension wire is recommended

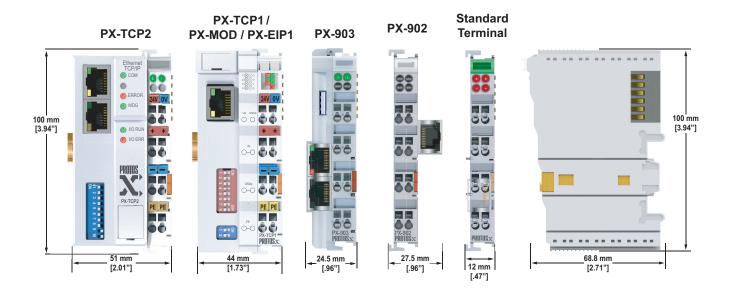
Removing Bus Coupler and Bus Terminals

A locking mechanism prevents individual units from being pulled off. For bus terminal removal, pull the orange DIN rail release tab firmly to unlatch the unit from the rail. If attached to other terminal units, slide unit forward until released. For Bus Couplers with locking wheels, release the DIN rail locking wheel, then pull firmly on DIN rail release tab.

Where applicable, rotate Locking Wheel to unlock Bus Coupler

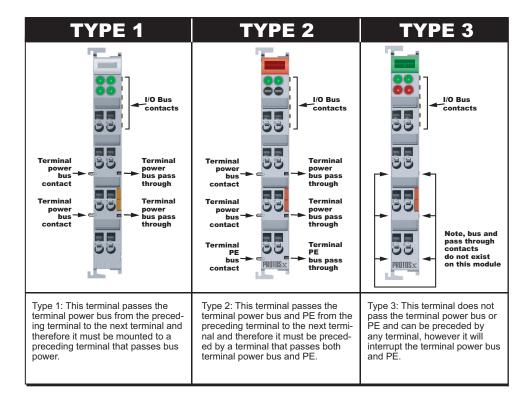
Firmly pull DIN Rail Release Tab to unlatch unit from rail.

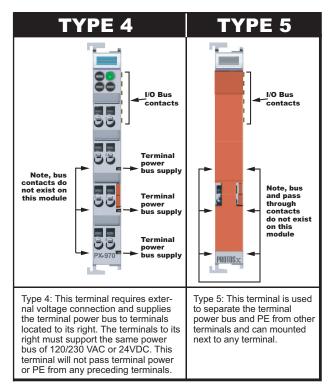

tFED-24 Universal Field I/O 1 - 8 0 0 - 6 3 3 - 0 4 0 5


Installation Considerations

Terminal Dimensions and Spacing Requirements

Use the following diagrams to make sure the Protos X system can be installed in your application. Protos X terminals require 35mm DIN rail for mounting; there are no orientation restrictions.


To ensure proper airflow for cooling purposes, units should be spaced, at a minimum, as shown. It is also important to check the Protos X dimensions against the conditions required for your application.



Installation Considerations

Terminal Types

tFED-26 Universal Field I/O 1 - 8 0 0 - 6 3 3 - 0 4 0 5