High-speed Counter Module

Specifications	
Module Type	Intelligent
I/O Points Assigned	16 X input, 32 Y output
Modules per CPU	Eight, in any local or expansion slot location
Field Wiring Connector	Removable terminal type
Count Signal Level	$4.75 \mathrm{VDC}-30 \mathrm{VDC}$ less than 10mA Maximum Count Speed Minimum Input Pulse Width Internal Power Consumption Operating Environment Manufacturer300 mA maximum at 5VDCle) (supplied by base power supply)

Overview

The DL405 high-speed counter provides high-speed up or down counting capability. It provides the user with count data and output signals such as Clockwise, Counter-clockwise, Decelerate, and Equal. The module functions asynchronously with the DL405 CPU, allowing fast response and control.
The D4-HSC module supports the following key features:

- Quadrature or up/down encoder input
- Maximum input pulse rate of 100 kHz (50% duty cycle)
- Seven user control inputs
- Four external outputs for controlling motor modes
- Counting ranģe from $-8,388,608$ to $+8,388,607$ with overflow
- Counter input multiplication of $\mathrm{X} 1, \mathrm{X} 2$, or X4
- User selectable count direction
- A or B mode selection

A mode to reset counter at preset B mode to continue counting after preset

- Find Home mode to search for home position
- Sampling count to determine pulse rate

Standard counting using one input

Standard counting using two inputs

Quadrature counting

Output control

High-speed Counter Module

External Module Input Descriptions	
IN A	Depending on mode chosen, this is either a standard UP/DOWN counter input, or one of the quadrature counter inputs.
IN B	Depending on mode chosen, this is either a standard UP/DOWN counter input, or one of the quadrature counter inputs.
IN Z	This input can be used to help you find home position for positioning control. It can also be used as an external means of resetting the counter.
LD (Load)	If you want to use an offset number with your counting, a rising edge signal at this terminal will copy the offset value into the current count.
RST (Reset)	A high ($O \mathrm{~N}$) signal at this terminal resets the counter to zero and it remains there until there is a transition to a low signal (OFF)
LATCH	You may want to store the current count. The rising edge of a signal at this terminal will store the current count in shared RAM. Counting continues with no interruption.
C.INH	You may want to temporarily ignore the count inputs coming in on INA and INB. A high (ON) signal at this terminal will inhibit the counting to accomplish this need. Current count is suspended until a transition to a low (OFF) signal is seen.
RUN	Not to be confused with Run mode of the DL405, a high (ON) signal here will activate HSC RUN. A low (OFF) signal will deactivate it.
LS1 and LS2	Either or both of these terminals can be connected to limit switches to help find home position, or they can merely be used as discrete inputs.

| | External Module Output Descriptions |
| :--- | :--- |\(\left|\begin{array}{l}CW

\hline Clockwise - Turns on when the onptional HSC RUN mode is invoked and the current count

is less than the reset value. It will reset when the current count equals the preset value. This

output can also be controlled independently from the count values with an internal output bit

allocated to the HSC.\end{array}\right|\)

Internal Interface Signals from DLAO5 GPU to D4-HSC

Reset OUT 1 and OUT 2
Reset Overflow
Load Offset to Counter
Enabled HSC RUN
Enable CCW
Enable OUT2
Enable CW
Enable OUT1
Inhibit Counting
Latch Current Count
Reset Current Count
Select count Mode
Change Count Direction
Enable Home Search
Enable x2 Operation
Enable x4 Operation
Select Reset Operation
Enable Sampling
Copy Offset
Reset CW, CCW
Reset Home Search Error
Enable Reset with INZ
Enable OUT2 after Home Search

Internal Interface Signals from D4-HSC to DLAOF GPU

Current Count > Preset Value
Current Count = Preset Value
Current Count < Preset Value
Count Overflow
CCW Status
OUT2 Status
CW Status
OUT1 Status
LS2 Status
LS1 Status
Home Search Executing
Sampling Executing
Missing Terminal Block
External Power Supply Failure
Internal HSC Error

Check the Power Budget

Verify your power budget requirements

Your I/O configuration choice can be affected by the power requirements of the I/O modules you choose. When determining the types and quantity of $1 / O$ modules you will be using, it is important to remember there is a limited amount of power available from the power supply.
The chart on the opposite page indicates the power supplied and used by each DL405 device. The adjacent chart shows an example of how to calculate the power used by your particular system. These two charts should make it easy for you to determine if the devices you have chosen fit within the power budget of your system configuration.
If the I/O you have chosen exceeds the maximum power available from the power supply, you can resolve the problem by shiffing some of the modules to an expansion base or remote I/O base (if you are using remote I/O).

Warning: It is extremely important to calculate the

 power budget correctly. If you exceed the power budget, the system may operate in an unpredictable manner which may result in a risk of personal injury or equipment damage.
Use ZIPLinks to reduce power requirements

If your application requires a lot of relay outputs, consider using the ZipLink AC or DC relay output modules. These modules can switch high current (10A) loads without putting a load on your base power budget. Refer to Wiring System for DL405 PLCs later in this section for more information.

This logo is placed next to I/O modules that are supported by the ZIPLink connection systems.
See the I/O module specifications at the end of this section.

Calculating your power usage

The following example shows how to calculate the power budget for the DL405 system. The example is constructed around a single 8 -slot base using the devices shown. It is recommended you construct a similar table for each base in your system.

A				
	Base Number 0	Device Type	5 VDC (mA)	External 24 VDC Power (mA)
B	CURRENT SUPPLIED			
	CPU/Expansion Unit /Remote Slave	D4-440 CPU	3700	400
O	CURRENT REQURIED			
	SLOT 0	D4-16ND2	+150	+0
	SLOT 1	D4-16ND2	+150	+0
	SLOT 2	F4-04DA	+120	+100
	SLOT 3	D4-08ND3S	+100	+0
	SLOT 4	D4-08ND3S	+100	+0
	SLOT 5	D4-16TD2	+100	+0
	SLOT 6	D4-16TD2	+100	+0
	SLOT 7	D4-16TR	+1000	+0
I	OTHER			
	BASE	D4-08B-1	+80	+0
	Handheld Programmer	D4-HPP-1	+320	+0
E	Maximum Gurrent Required		2820	100
F	Remaining Gurrent Available		$3700-2820=880$	400-100=300
	1. Using a chart similar to the one above, fill in column 2. 2. Using the tables on the opposite page, enter the current supplied and used by each device (columns 3 and 4). Pay special attention to the current supplied by the CPU, Expansion Unit, and Remote Slave since they differ. Devices which fall into the "Other" category (Row D) are devices such as the Base and the Handheld programmer, which also have power requirements, but do not plug directly into the base. 3. Add the current used by the system devices (columns 3 and 4) starting with Slot 0 and put the total in the row labeled "maximum current required" (Row E). 4. Subtract the row labeled "Maximum current required" (Row E), from the row labeled "Current Supplied" (Row B). Place the difference in the row labeled "Remaining Current Available" (Row F). 5. If "Maximum Current Required" is greater than "Current Supplied" in either column 3 or 4, the power budget will be exceeded. It will be unsafe to use this configuration and you will need to restructure your I/O configuration. Note the auxiliary 24 VDC power supply does not need to supply all the external power. If you need more than the 400 mA supplied, you can add an external 24 VDC power supply. This will help keep you within your power budget for external power.			

DL405 CPU power supply specifications and power requirements

Specification	AC Powered Units	24 VIC Powered Units	125 VDC Powered Units
Part Numbers	$\frac{\frac{\text { D4-454, }}{\text { D4-450, }} \frac{\text { D4-440, }}{\text { D4-EX }} \text { (expansion base }}{\text { Unit), }}$		D4-450DC-2
Voltage Withstand (dielectric)	1 minute @ 1,500 VAC between primary, secondary, field ground, and run relay		
Insulation Resistance	$>10 \mathrm{M} \Omega$ at 500 VDC		
Input Voltage Range	85-132 VAC (110 range) 170-264 VAC (220	$20-28$ VDC (24 VDC) with less than 10% ripple	90-146 VDC (125 VDC) with less than 10% ripple
Maximum Inrush Current	20 A	20 A	20 A
Maximum Power	50 VA	38 W	30 W

Power Requirements

