Fan Heaters for Enclosures, DIN Rail and Screw Mounted

Applications
The fan heaters are designed to prevent the formation of condensation and ensure an evenly distributed interior air temperature in enclosures. The heater is connected using the internal terminal connectors. The desired temperature can be set and maintained by the integrated thermostat (where available) or external thermostat and the high-performance axial fan provides forced air circulation. The heater design minimizes side surface temperatures of the housing. The small size of these heaters makes them ideal for use in enclosures where space is at a premium.

Features
- Compact fan heater
- Quiet operation
- Heating power adjusts to ambient temperature
- Integrated adjustable thermostat (027009-00 and 027019-00)
- DIN rail mountable
- Screw mount available (028009-00, 028009-01, 028109-00 and 028109-01)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Price</th>
<th>Heating capacity</th>
<th>Operating Voltage</th>
<th>Max. current</th>
<th>Air flow, free blowing</th>
<th>Thermostat range</th>
<th>Weight (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>027009-00</td>
<td>$143.75</td>
<td>550 W</td>
<td>100-120 VAC, 50/60 Hz</td>
<td>14.0 A</td>
<td>20 cm (35 m³/h)</td>
<td>32°F to 140°F</td>
<td>2.0 lbs (907 g)</td>
</tr>
<tr>
<td>027019-00</td>
<td>$160.25</td>
<td>650 W</td>
<td></td>
<td>15.0 A</td>
<td>26 cm (45 m³/h)</td>
<td></td>
<td>2.4 lbs (1088 g)</td>
</tr>
<tr>
<td>028009-00</td>
<td>$86.75</td>
<td>150 W</td>
<td></td>
<td>6.0 A</td>
<td>8 cm (13.8 m³/h)</td>
<td>N/A</td>
<td>0.66 lb (300 g)</td>
</tr>
<tr>
<td>028009-01</td>
<td>$86.75</td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>028109-00</td>
<td>$110.00</td>
<td>400 W</td>
<td></td>
<td>9.0 A</td>
<td>32 cm (54 m³/h)</td>
<td>N/A</td>
<td>1.1 lb (500 g)</td>
</tr>
<tr>
<td>028109-01</td>
<td>$110.00</td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 At 68°F (20°C) ambient temperature

Prices as of April 16, 2014. Check Web site for most current prices.
Fan Heaters for Enclosures, DIN Rail and Screw Mounted (continued)

Dimensions:

027009-0 and 0270019-00

Dimensions [mm]

Wiring Diagrams

027009-00 and 027019-00

Wiring note: Only connect the L and N1 terminals - N2 is not used and grounding is not required.
Fan Heaters for Enclosures, Panel or DIN Rail Mounted

Applications
The fan heaters are designed to prevent the formation of condensation and ensure an evenly distributed interior air temperature in enclosures. These fan heaters include an integrated thermostat for temperature control. These models were designed as a stationary unit to be mounted on the panel or DIN rail.

Features
- Compact fan heater
- Quiet operation
- Integrated adjustable thermostat
- Built-in overheat protection
- Double insulated plastic housing
- Panel or DIN rail mounting

<table>
<thead>
<tr>
<th>Fan Heaters (Panel or DIN Rail Mounted) Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Heating Element</td>
</tr>
<tr>
<td>Overheat protection</td>
</tr>
<tr>
<td>Heating Capacity</td>
</tr>
<tr>
<td>Operating Voltage</td>
</tr>
<tr>
<td>Max. Current (Inrush)</td>
</tr>
<tr>
<td>Air Flow (free blowing)</td>
</tr>
<tr>
<td>Thermostat Range</td>
</tr>
<tr>
<td>Axial Fan, Ball Bearing</td>
</tr>
<tr>
<td>Connection</td>
</tr>
<tr>
<td>Housing</td>
</tr>
<tr>
<td>Mounting</td>
</tr>
<tr>
<td>Mounting Position</td>
</tr>
<tr>
<td>Recommended Mounting Distance</td>
</tr>
<tr>
<td>Operating/Storage Temperature</td>
</tr>
<tr>
<td>Protection Class</td>
</tr>
<tr>
<td>Protection Type</td>
</tr>
<tr>
<td>Approvals</td>
</tr>
</tbody>
</table>

1 At 68°F (20°C) ambient temperature

Dimensions:

130599-00
Inches [mm]

130609-00
Inches [mm]

Wiring Diagram
Industrial strength heating options for your enclosure from AutomationDirect

Thermostats

• Compact design
• Fixed set point or wide adjustment ranges
• Color coded modules and temperature dials
• N.C. / N.O. in one unit (Part Numbers 011630-00, 011640-00, 011720-00 and 011720-01)
• Separate adjustable temperatures (Part Numbers 011720-00 and 011720-01)
• 35mm DIN rail mounting
• CE, UL Recognized, RoHS compliant

Hygrostats and Hygrotherms

Electronic hygrostats sense the relative humidity in an enclosure and turn on a heater at the setpoint to prevent the formation of condensation in the enclosure. Electronic hygrotherms sense the ambient temperature and relative air humidity to turn a connected device on or off according to setpoints.

Heaters

• Compact design
• Quiet operation
• Low surface temperatures (convection heaters)
• Double insulated protection
• 35mm DIN rail and panel mounting options
• CE, UL Recognized, RoHS compliant

www.automationdirect.com/enclosures
Enclosure Thermal Management
Enclosure Heating and Heater Selection

Why Heat an Enclosure?

Today’s miniaturization of enclosure components results in high packing densities, which in turn results in higher temperatures within the enclosure. These high temperatures are harmful to electronic components. In response, cooling systems have become standard in many applications. However, just as critical and widely underestimated, are failures caused by the formation of moisture. Under certain climatic conditions, moisture can build up not only in outdoor or poorly insulated enclosures, but also in highly protected and well-sealed enclosures.

Moisture and Failure

Moisture, especially when combined with aggressive gases and dust, causes atmospheric corrosion and can result in the failure of components such as circuit breakers, busbars, relays, integrated circuit boards and transformers. The greatest danger lies in conditions where electronic equipment is exposed to relatively high air humidity or extreme variations in temperature, such as day-and-night operation or outdoor installation. Failure of components in such cases is usually caused by changing contact resistances, flashovers, creepage currents or reduced insulation properties.

Eliminate Moisture

Moisture and corrosion will remain low if relative air humidity stays below 60%. However, relative humidity above 65% will significantly increase moisture and corrosion problems. This can be prevented by keeping the environment inside an enclosure at a temperature as little as 9°F (5°C) higher than that of the ambient air. Constant temperatures are a necessity to guarantee optimal operating conditions. Continuous temperature changes not only create condensation but they reduce the life expectancy of electronic components significantly. Electronic components can be protected by cooling during the day and heating at night.

Thermal Management

Modern enclosure heaters are designed to protect against condensation. They heat the air inside enclosures, preventing water vapor from condensing on components while providing the greatest possible air circulation and low energy consumption. Other heating element technology improvements include:

- Longer operating life
- Greater energy efficiencies
- Quick wiring options
- Easier mounting

Heater Location

Ideally, most heaters will perform optimally when mounted near the bottom of an enclosure and used in conjunction with a separate controller such as a thermostat and/or hygrostat. With the controller located in an area of the cabinet that is representative of the average temperature or humidity requirement, the heater should then be placed in a position near the bottom but not directly beneath the controller. This placement will ensure that the controller is not influenced by direct heat from the heater.

Heater Calculation

Follow Steps 1-5 to determine the heating requirement of an enclosure (US units - left column, metric - right)

STEP 1: Determine the Surface Area (A) of your enclosure which is exposed to open air.

Enclosure Dimensions:

height = ________ feet ________ meters
width = ________ feet ________ meters
depth = ________ feet ________ meters

Choose Mounting Option from next page, and calculate the surface area as indicated

A = ________ ft2 or ________ m2

STEP 2: Choose the Heat Transmission Coefficient (k) for your enclosure’s material of construction.

<table>
<thead>
<tr>
<th>Material</th>
<th>US (W/(ft2•K))</th>
<th>Metric (W/(m2•K))</th>
</tr>
</thead>
<tbody>
<tr>
<td>painted steel</td>
<td>0.511</td>
<td>5.5</td>
</tr>
<tr>
<td>stainless steel</td>
<td>0.344</td>
<td>3.7</td>
</tr>
<tr>
<td>aluminum</td>
<td>1.115</td>
<td>12.0</td>
</tr>
<tr>
<td>plastic or insulated stainless</td>
<td>0.325</td>
<td>3.5</td>
</tr>
</tbody>
</table>

k = ________ W/(ft2•K) or ________ W/(m2•K)

STEP 3: Determine the Temperature Differential (ΔT).

A. Desired enclosure interior temp. = ___°F ___°C
B. Lowest ambient (outside) temp. = ___°F ___°C

Subtract B from A = Temp. diff. (ΔT) = ___°F ___°C

For these calculations, ΔT must be in degrees Kelvin (K). Therefore, divide ΔT (°F) by 1.8. $\Delta T = ________ K$

STEP 4: Determine Heating Power (P_V), if any (generated from existing components, i.e. transformer).

$P_V = ________ W$ or ________ W

STEP 5: Calculate the Required Heating Power (P_H) for your enclosure based on the above values.

If enclosure is located inside:

$P_H = (A \times k \times \Delta T) - P_V = ________ W$

If enclosure is located outside:

$P_H = 2 \times (A \times k \times \Delta T) - P_V = ________ W$
Enclosure Mounting Types and Surface Area Calculations

1. Free-Standing

![Free-Standing Diagram]

Area (A) = 1.8 (H x W) + 1.8 (H x D) + 1.8 (W x D)

2. Wall-Mounted

![Wall-Mounted Diagram]

Area (A) = 1.4 (H x W) + 1.8 (H x D) + 1.8 (W x D)

3. Ground

![Ground Diagram]

Area (A) = 1.8 (H x W) + 1.8 (H x D) + 1.4 (W x D)

4. Ground and Wall

![Ground and Wall Diagram]

Area (A) = 1.4 (H x W) + 1.8 (H x D) + 1.4 (W x D)