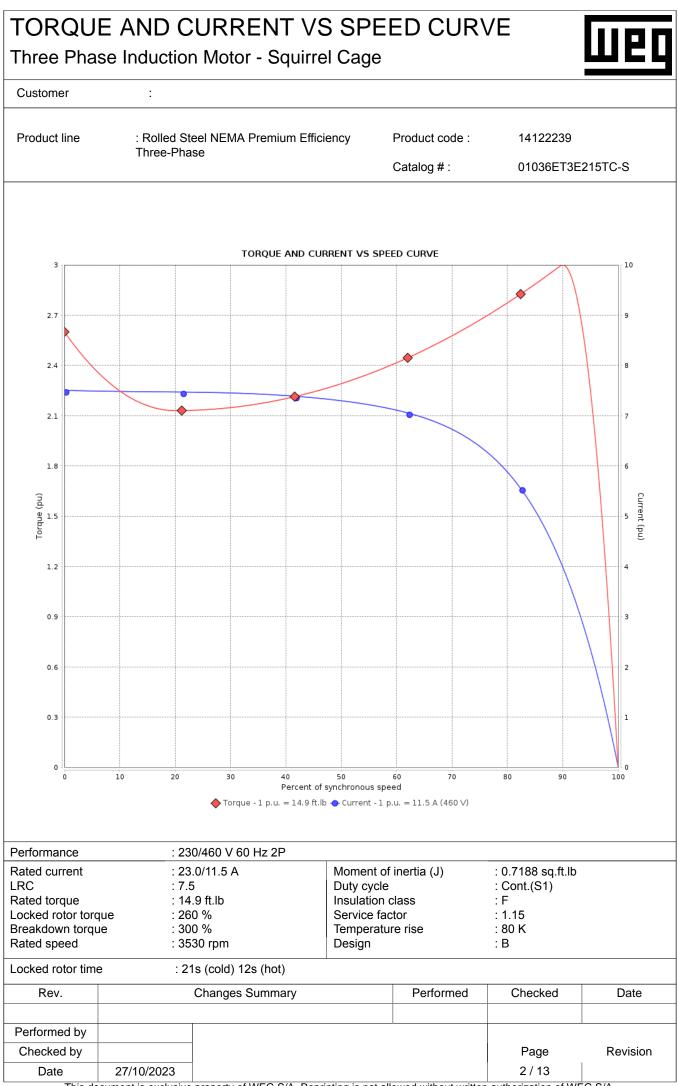
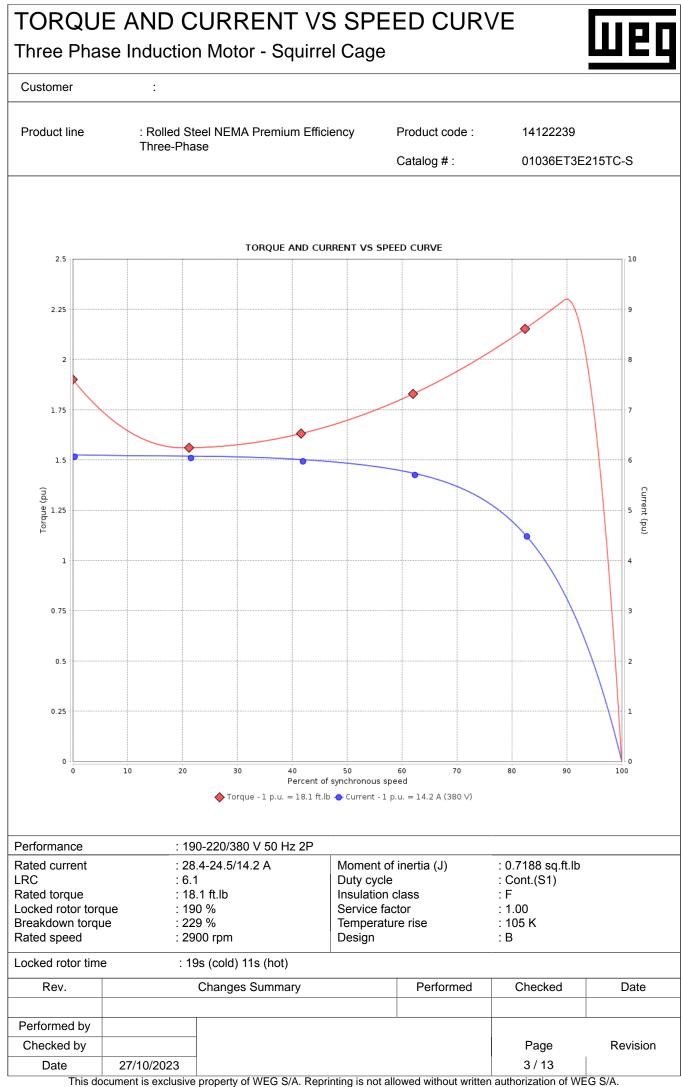
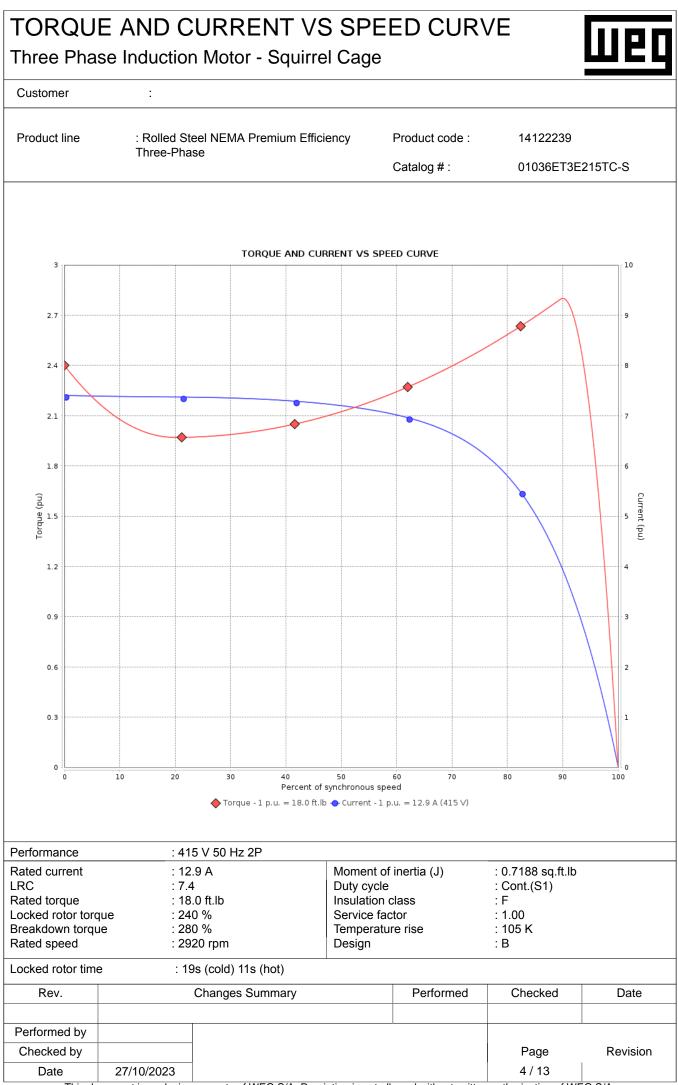
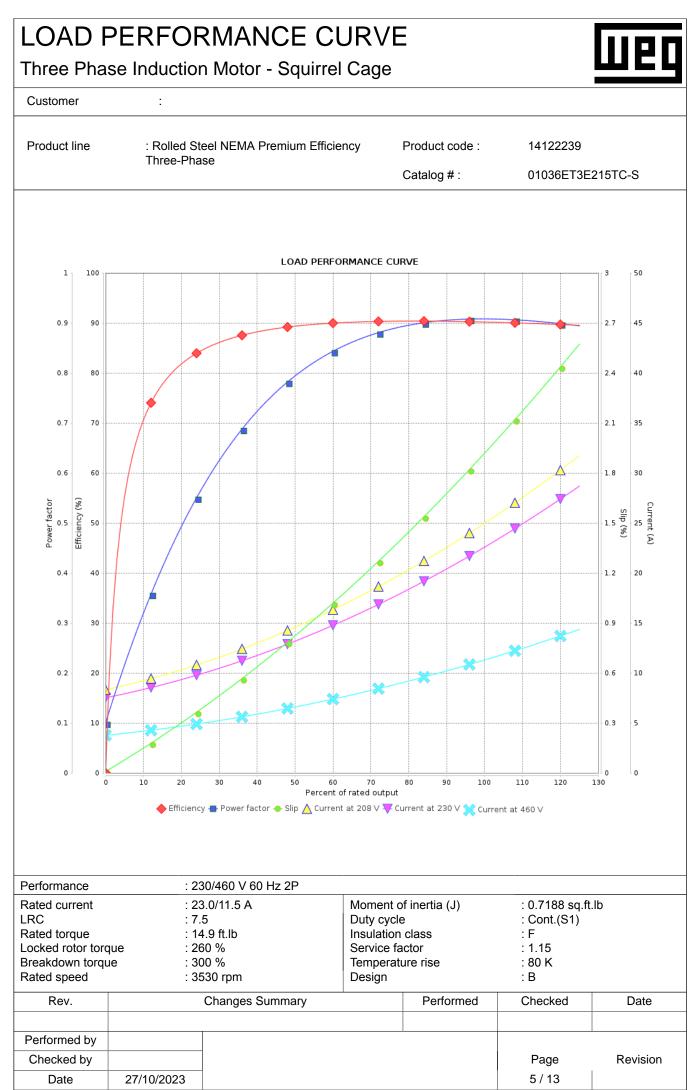
DATA SHEET

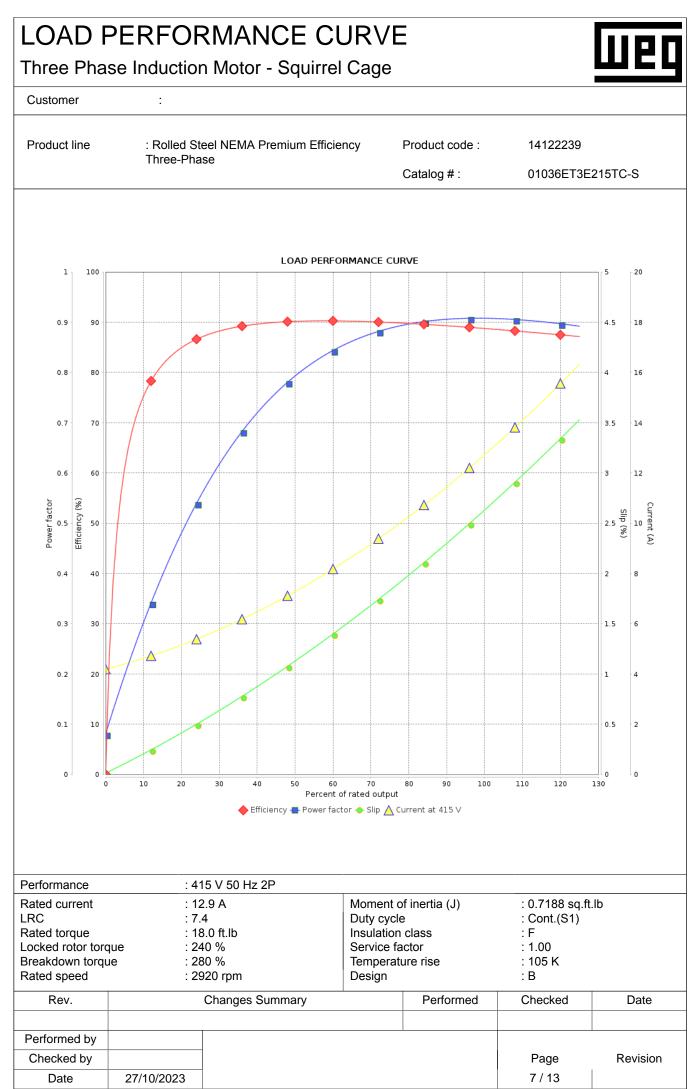

:

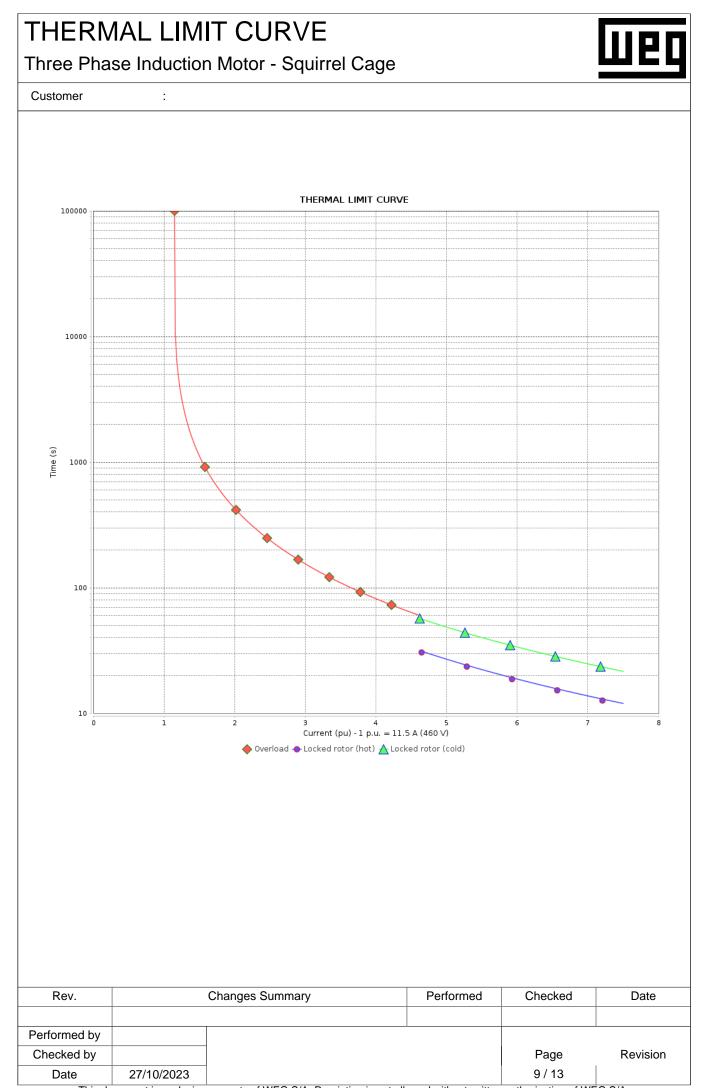

Three Phase Induction Motor - Squirrel Cage



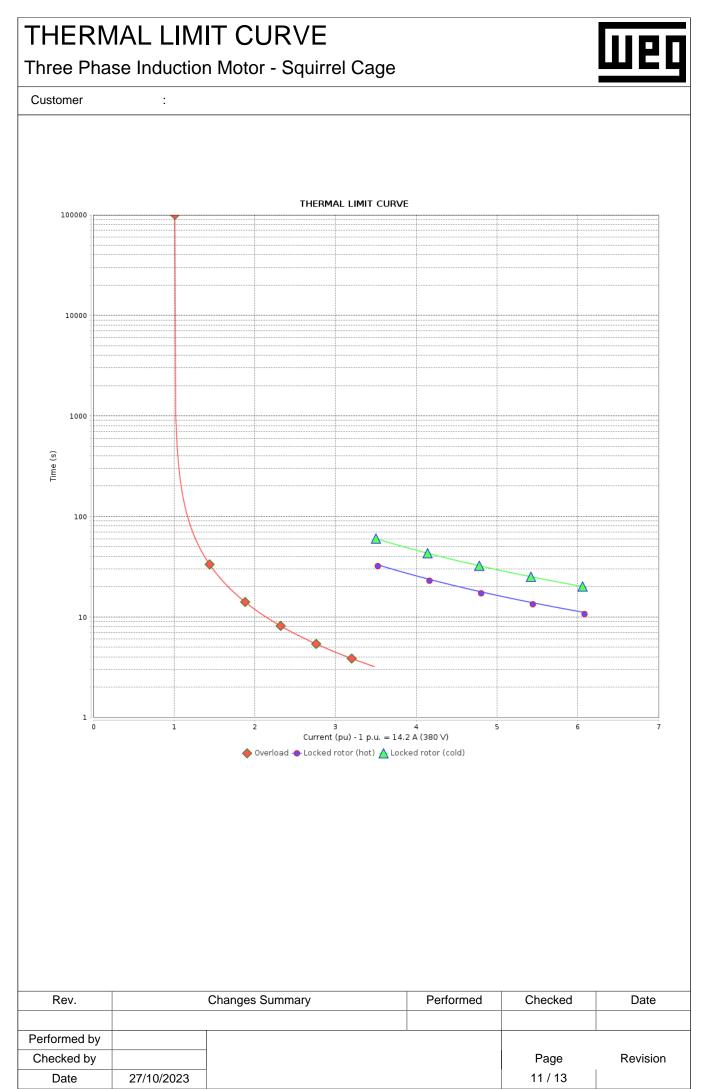

Customer

Frame Insulation class Duty cycle Ambient temper Altitude Protection degre Design Output [HP] Poles Frequency [Hz] Rated voltage [V] Rated current [A] L. R. Amperes [A] LRC [A] No load current [A Rated speed [RP Slip [%] Rated torque [ft.lt Locked rotor torque Breakdown torque Service factor	ee	: 213/5TC : F : Cont.(S1) : -20°C to +4(: 1000 m.a.s. : IP55 : B (230 23.0 173	I. 10 2 30 1/460	Cooling Mounting Rotation Starting Approx. Moment	g ¹ method	01036ET3E : IC411 - TE : W-6 : Both (CW : Direct On : 164 lb : 0.7188 sq.	FC and CCW) Line	
Insulation class Duty cycle Ambient temper Altitude Protection degre Design Output [HP] Poles Frequency [Hz] Rated voltage [V] Rated current [A] L. R. Amperes [A] LRC [A] No load current [A Rated speed [RP Slip [%] Rated torque [ft.lt Locked rotor torque Breakdown torque	ee	: F : Cont.(S1) : -20°C to +40 : 1000 m.a.s. : IP55 : B (230 23.0 173	I. 10 2 30 1/460	Mountin Rotation Starting Approx. Moment	g ¹ method weight ³ of inertia (J) 10	: W-6 : Both (CW : Direct On : 164 lb	and CCW) Line ft.lb	
Design Output [HP] Poles Frequency [Hz] Rated voltage [V] Rated current [A] L. R. Amperes [A] LRC [A] No load current [A Rated speed [RP Slip [%] Rated torque [ft.lt Locked rotor torque Breakdown torque		: B	2 60 0/460		10	: 0.7188 sq.		
Poles Frequency [Hz] Rated voltage [V] Rated current [A] L. R. Amperes [A] LRC [A] No load current [A Rated speed [RP Slip [%] Rated torque [ft.lk Locked rotor torque Breakdown torque	\]	230 23.0 23.0 173	2 60 0/460				10	
Frequency [Hz] Rated voltage [V] Rated current [A] L. R. Amperes [A] LRC [A] No load current [A Rated speed [RP Slip [%] Rated torque [ft.lk Locked rotor torque Breakdown torque	\]	230 23.0 173	60 0/460		2		2	
Rated voltage [V] Rated current [A] L. R. Amperes [A] LRC [A] No load current [A Rated speed [RP Slip [%] Rated torque [ft.lt Locked rotor torque Breakdown torque	\]	230 23.0 173	/460		50		50	
Rated current [A] L. R. Amperes [A LRC [A] No load current [A Rated speed [RP Slip [%] Rated torque [ft.lt Locked rotor torque Breakdown torque	\]	23.0 173		1	190-220/380		415	
L. R. Amperes [A LRC [A] No load current [A Rated speed [RP Slip [%] Rated torque [ft.lt Locked rotor torque Breakdown torque	\]	173)/11.5		3.4-24.5/14.2		12.9	
_RC [A] No load current [A Rated speed [RP Slip [%] Rated torque [ft.lk Locked rotor torque Breakdown torque	\]	7.5x(C	/86.2		73-150/86.6		95.5	
No load current [A Rated speed [RP Slip [%] Rated torque [ft.lk Locked rotor torque Breakdown torque			Code H)		.1x(Code G)		(Code H)	
Rated speed [RP Slip [%] Rated torque [ft.lk .ocked rotor torque Breakdown torque			3/3.77		43-6.42/3.71		4.20	
Slip [%] Rated torque [ft.lk Locked rotor torque Breakdown torque	-		530		2900		2920	
Rated torque [ft.lk Locked rotor torqu Breakdown torqu			.94		3.33		2.67	
Locked rotor torque Breakdown torque	1		4.9		18.1		18.0	
Breakdown torque		2	60		190		240	
Service factor		3	00		229		280	
			.15		1.00		1.00	
Temperature rise			ЭК		105 K		105 K	
_ocked rotor time		21s (cold) 12s (hot)	19s	(cold) 11s (hot)	19s (co	ld) 11s (hot)	
Noise level ²			70.0 dB(A)		67.0 dB(A)	67.	0 dB(A)	
	25%		89.3		91.7		91.1	
Efficiency (%)	50%		9.5		90.0		90.1	
	75%		0.2		89.2		90.0	
	100%		90.2		87.2		88.7	
	25%		0.53		0.59		0.53	
Power Factor	50%		0.80		0.85		0.80	
	75%		0.88		0.90		0.88	
	100%	0.	0.91		0.92		0.91	
Bearing type		Drive end 6208 ZZ	Non drive end 6206 ZZ	Foundati Max. trac		: 202 lb		
Sealing		: V'Ring	V'Ring	Max. compression		: 366 lb		
Lubrication inter	val	-	-					
Lubricant amou	nt	: -	-					
Lubricant type		: Mobil F	Polyrex EM					
Notes USABLE @208\ This revision rep	aces and can		s one, which			based on tests wi		
must be eliminate (1) Looking the m (2) Measured at (3) Approximate manufacturing pr (4) At 100% of fu	notor from the 1m and with to weight subjec ocess.	plerance of +3d		power su MG-1.	pply, subject to th	e tolerances stipu	lated in NEMA	
Rev.		Changes S	Summary		Performed	Checked	Date	
Dorformed by								
Performed by						_	- · ·	
O L 1 1 1						Page	Revision	
Checked by						1 / 13	1	

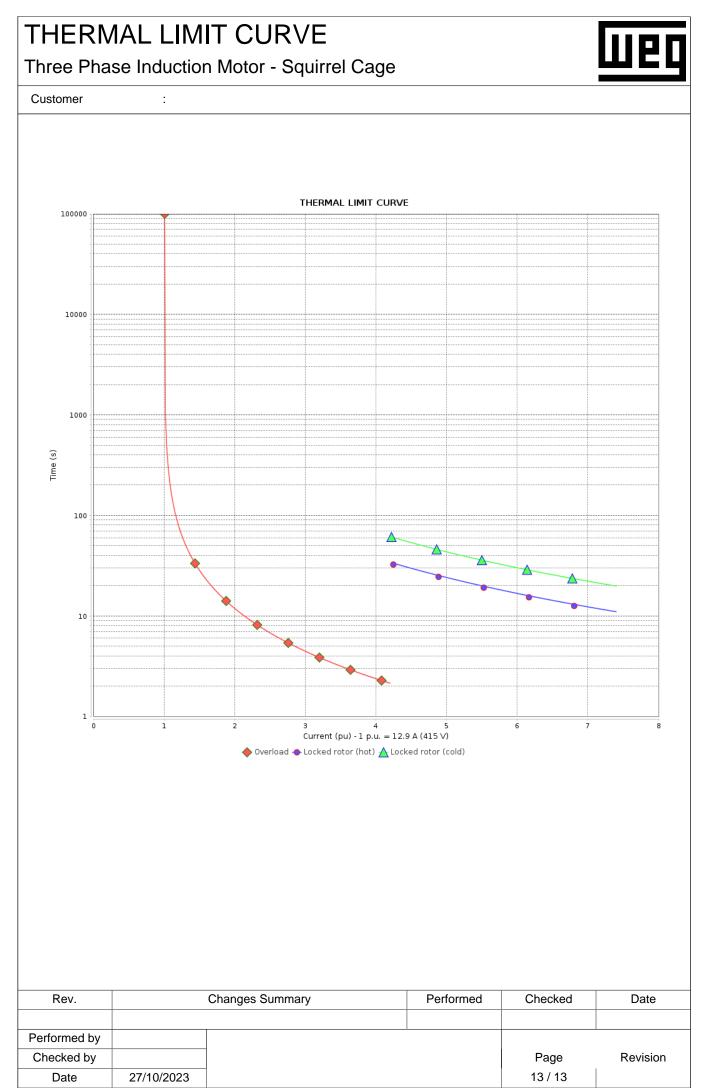


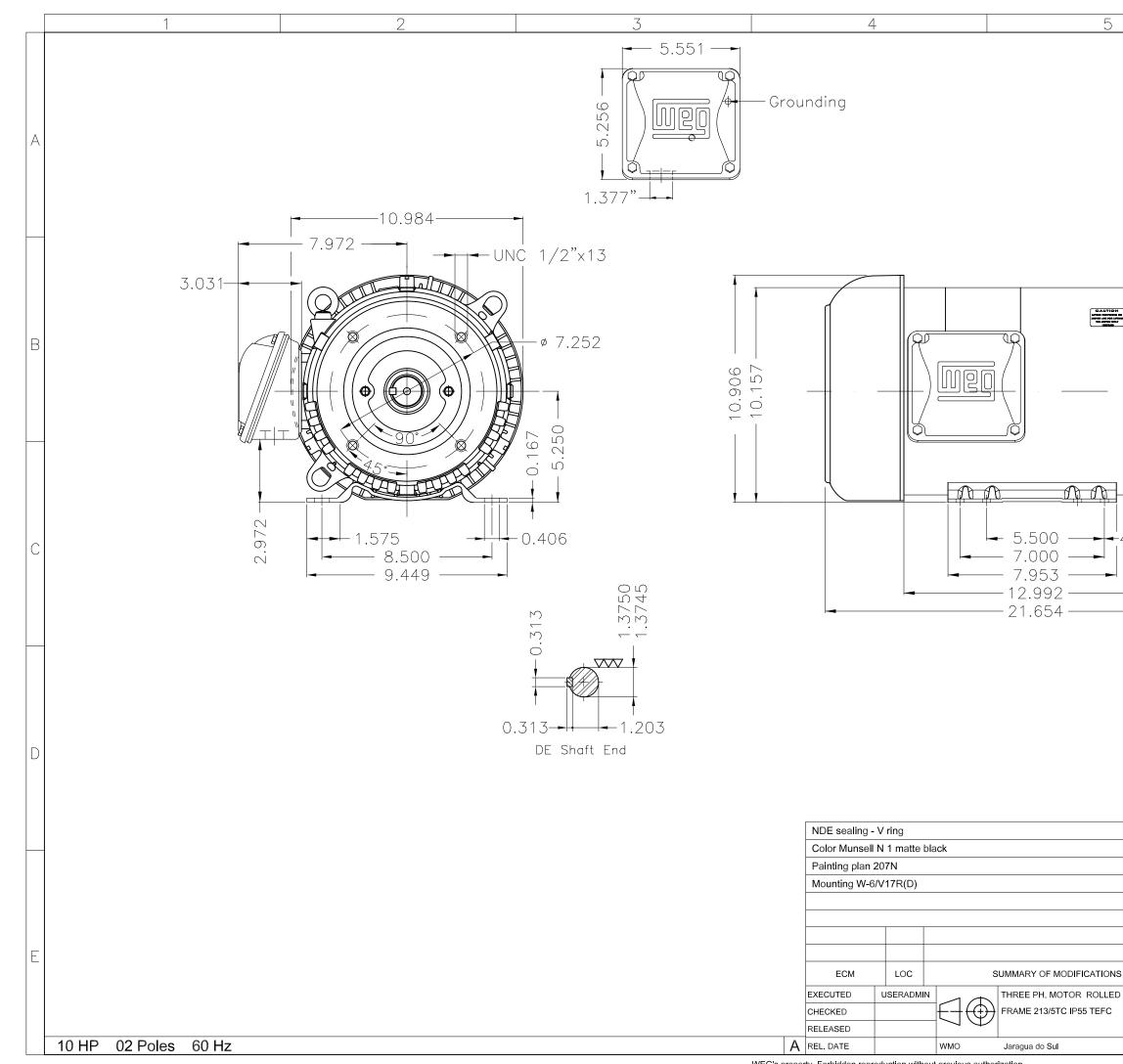

LOAD PERFORMANCE CURVE Three Phase Induction Motor - Squirrel Cage Customer : Product line : Rolled Steel NEMA Premium Efficiency Product code : 14122239 Three-Phase Catalog # : 01036ET3E215TC-S LOAD PERFORMANCE CURVE 1 100 50 4.5 45 0.9 90 0.8 80 Δ 40 35 0.7 70 3.5 0.6 60 30 3 % Power factor Λ 25 (A) Slip (%) Efficiency 0.5 50 2.5 Δ 0.4 40 2 20 1.5 15 0.3 30 Δ 0.2 20 1 10 5 0.1 10 0.5 0 0 0 0 Ó 10 20 30 90 100 110 120 130 40 60 70 80 50 Percent of rated output 🔶 Efficiency 🖶 Power factor 🔶 Slip 🛆 Current at 190 V 🐺 Current at 220 V 👷 Current at 380 V Performance : 190-220/380 V 50 Hz 2P Rated current : 28.4-24.5/14.2 A Moment of inertia (J) : 0.7188 sq.ft.lb LRC Duty cycle : Cont.(S1) : 6.1 Insulation class Rated torque : 18.1 ft.lb : F Locked rotor torque : 190 % Service factor : 1.00 Breakdown torque : 229 % Temperature rise : 105 K Rated speed : 2900 rpm Design : B Rev. Performed Checked Date **Changes Summary**

Performed by Checked by Revision Page 6/13 Date 27/10/2023


	L LIMIT CURVE Induction Motor - Squirrel	Cage	шед				
Customer	:						
Product line	: Rolled Steel NEMA Premium Efficien Three-Phase	cy Product code : Catalog # :	14122239 01036ET3E215TC-S				
Performance	: 230/460 V 60 Hz 2P						
Rated current LRC Rated torque Locked rotor torque Breakdown torque Rated speed	: 7.5 : 14.9 ft.lb : 260 % : 300 %	Moment of inertia (J) Duty cycle Insulation class Service factor Temperature rise Design	: 0.7188 sq.ft.lb : Cont.(S1) : F : 1.15 : 80 K : B				
Heating constant							

Heating constant	t				
Cooling constant	t				
Rev.		Changes Summary	Performed	Checked	Date
Performed by					
Checked by		-		Page	Revision
Date	27/10/2023			8 / 13	0.0/1


	L LIMIT CURVE Induction Motor - Squirrel	Cage	Шер
Customer	:		
Product line	: Rolled Steel NEMA Premium Efficier Three-Phase	ncy Product code : Catalog # :	14122239 01036ET3E215TC-S
Performance	: 190-220/380 V 50 Hz 2P		
Rated current	: 28.4-24.5/14.2 A	Moment of inertia (J)	: 0.7188 sq.ft.lb
LRC Rated torque	: 6.1 : 18.1 ft.lb	Duty cycle Insulation class	: Cont.(S1) : F
Locked rotor torque	: 190 %	Service factor	: 1.00
Breakdown torque Rated speed	: 229 % : 2900 rpm	Temperature rise Design	: 105 K : B
Nated speed	. 2300 ipin	Design	. U


Heating constant	t				
Cooling constant	t				
Rev.		Changes Summary	Performed	Checked	Date
Performed by					·
Checked by				Page	Revision
Date	27/10/2023			10 / 13	
This do	cument is exclusive	property of WEG S/A. Reprin		authorization of WE	G S/A.

THERMA	THERMAL LIMIT CURVE							
Three Phase	Induction Motor - Squirrel	Cage						
Customer	:							
Product line	: Rolled Steel NEMA Premium Efficien Three-Phase	-	14122239					
		Catalog # :	01036ET3E215TC-S					
Performance	: 415 V 50 Hz 2P							
Rated current LRC		Moment of inertia (J) Duty cycle	: 0.7188 sq.ft.lb : Cont.(S1)					
Rated torque	: 18.0 ft.lb	Insulation class Service factor	: F : 1.00					
Locked rotor torque Breakdown torque	: 280 %	Temperature rise	: 105 K					
Rated speed Heating constant	: 2920 rpm	Design	: B					
nearing constant								

ricating constan	L C C C C C C C C C C C C C C C C C C C					
Cooling constant	t					
Rev.		Changes Summary		Performed	Checked	Date
Performed by						
Checked by		_			Page	Revision
Date	27/10/2023	-			12 / 13	
This do	ocument is exclusive	e property of WEG S/A. Reprint	ting is not all	owed without written	authorization of WE	G S/A.

WEG's property. Forbidden reproduction without previous authorization.

)			6		
		- 3.129 - 2.480 	8.200		Dimensions is incluse
	USERADMIN				00
NS	EXECUTED	CHECKED	RELEASED	DATE	VER
ED STEEL NEMA	PREM EFF	PREV	FW		
Deodu-	tEngineering	WDD SHEET	00	ШР	
Produc	t Engineering	SHEEL	1 / 1		\$

COUNT OF CONTRACT	For 60H2: Class I, Zone 2, IIC Class I, DIV2, Gr. A,B,C,D - T3 Class II, DIV2, Gr. F0 - T4 DIV2 Inverter DUV (5F1.00) DIV2 Inverter DUV (5F1.00)	10 7.5 23.01460 23.011.5 25.4113.2 1.15 0.91 25.4113.2 1.15 0.91 1.15 0.91 1.15 0.97 1.15 1.15 0.97 1.101 CT MOBIL POLYREX EM 1.101 CT 1.101 CT 1.100 CT 1.101 CT 1.100 CT 1.000 CT	1 12 13 EXPERSIST IN FORMATION EXPERSIST IN FORMATION A SECONDARY WITH INSTANCE A SECONDARY WITH INSTANCE A SECONDARY AND A SECONDARY A SECONDA
	MADE IN MEXICO MAT: 1412239 CC029A W01.TEOICOXON MODEL 01036ET3E215TC-S	PH 3 Hz 60 HP 70 DUTY CONT V 7.5 ALT 1000 m.a.k.l A 23.0/11.5 ALT 1000 m.a.k.l A 20.0/K ALTERNATE RATING: 10HP 50HL 1000 m.g. 10H 20.0/K ALTERNATE RATING: 10H 20.0/K Conself area-inverted uby motor For 80HL 20.0 m.g. 10H 100.1 VT, 101 TO 20.20380-415V 20.1 VT, 101 Conself area-inverted uby motor For 80HL 20.0 m.g. 10H 100.1 VT, 101 TO 20.0 m.g. 10H 100.1 VT, 101 Conself area-inverted uby motor For 80HL 20.0 m.g. 10H 100.1 VT, 101 TO 20.0 m.g. 10H 100.1 VT, 101 Conself area-inverted uby motor For 80HL 20.0 m.g. 10H 100.1 VT, 101 TO 20.0 m.g. 10H 100.1 VT, 101 Conself area-inverted uby mo	ADL1 [2 [3] A [1 [2 [3] A [4] [2 [3] A [4] [2 [4] [4] [4] [4] [4] [4] [4] [4] [4] [4]