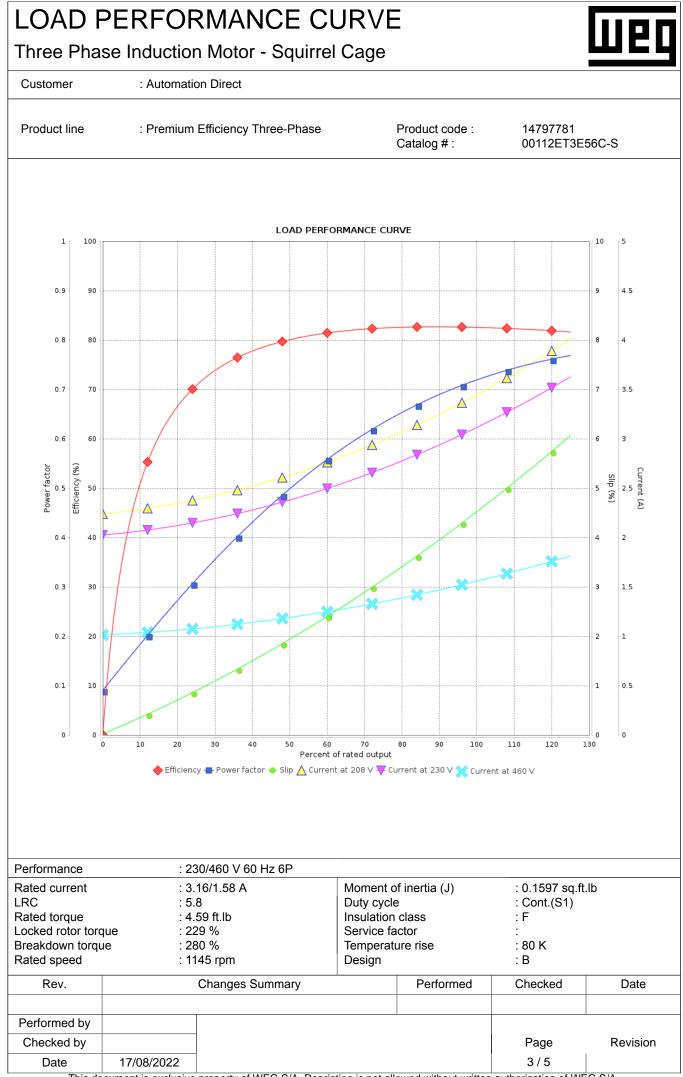
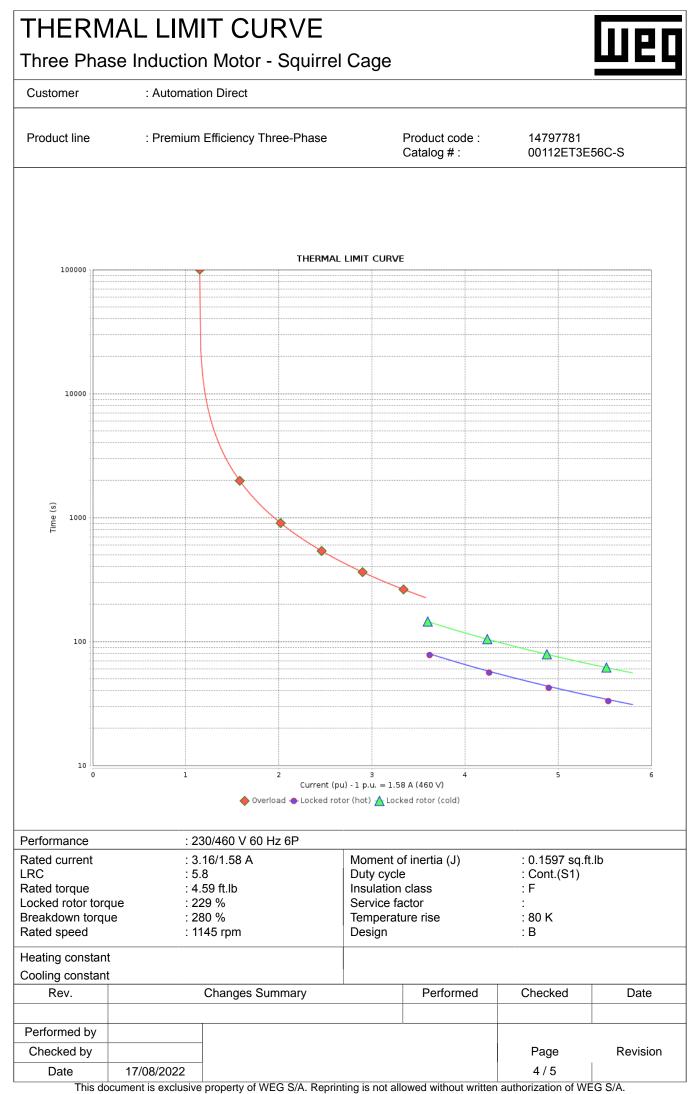
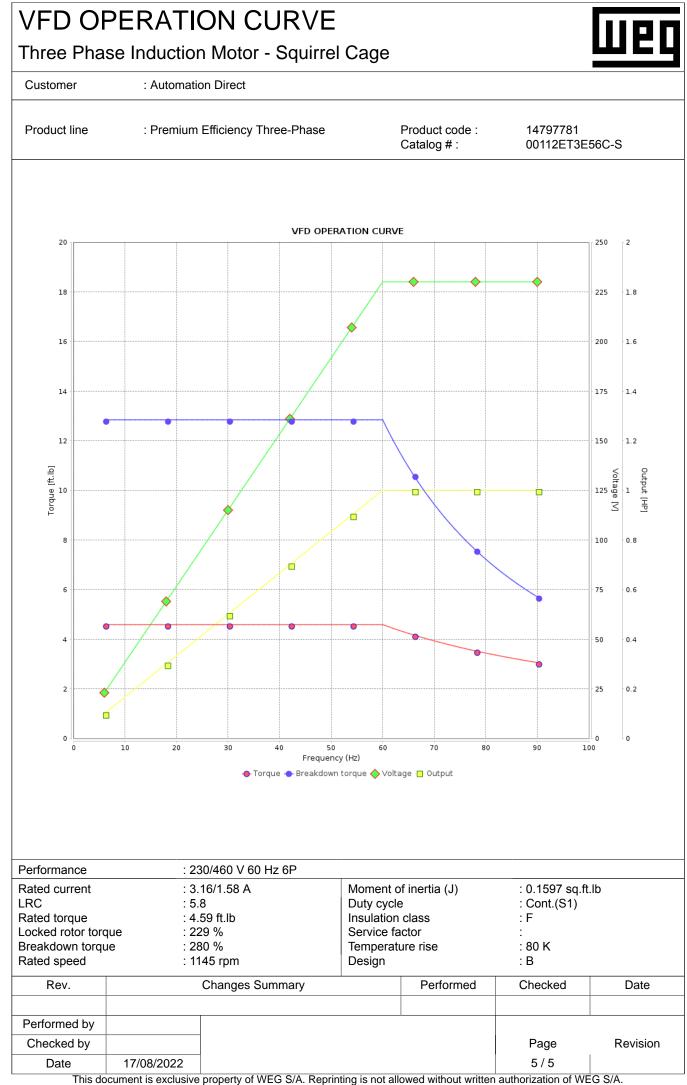
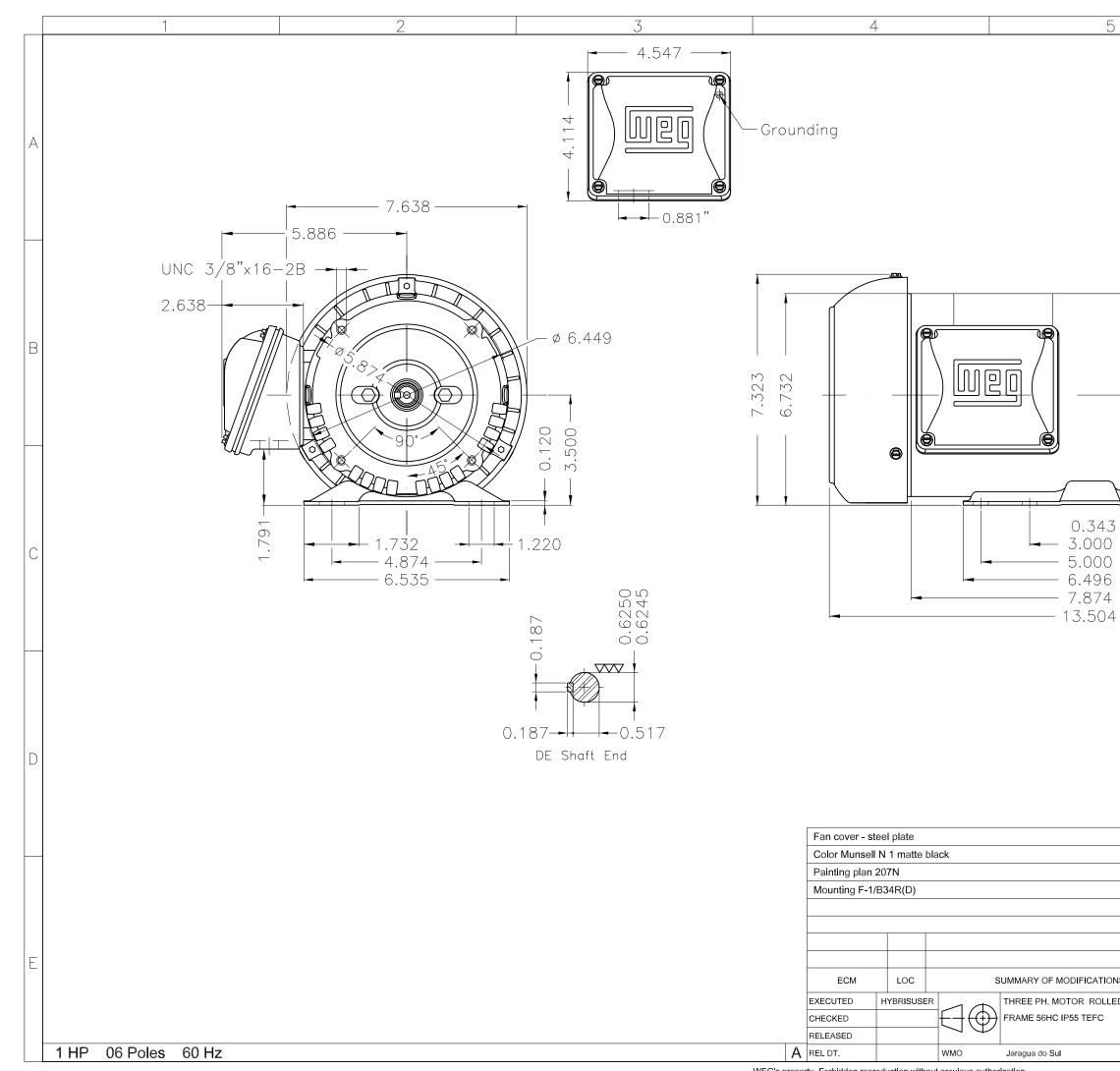

DATA SHEET Three Phase Induction Motor - Squirrel Cage


Customer : Automation Direct

Product line	: Pre	emium Effi	ciency Three	e-Phase		Product code : Catalog # :	14797781 00112ET3E	56C-S
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torqu Breakdown torque Insulation class Service factor Moment of inertia Design	;	: 6 : 60 F : 230. : 3.16 : 18.3 : 5.8x : 2.03 : 114 : 4.58 : 4.59 : 229 : 280 : F : 1.15	P (0.75 kW) Hz /460 V 6/1.58 A 8/9.16 A ((Code J) 8/1.01 A 5 rpm 3 % 9 ft.lb % %		Tempera Duty cyc Ambient Altitude	t temperature on degree method g 1 ¹ vvel ² method	: 55s (cold) : 80 K : Cont.(S1) : -20°C to + : 1000 m.a.: : IP55 : IC411 - TE : F-1 : Both (CW : 50.0 dB(A : Direct On : 38.6 lb	40°C s.l. EFC and CCW)
Output	25%	50%	75%	100%	Foundatio	n loads		
Efficiency (%) Power Factor	79.5 0.28	80.0 0.50	82.5 0.63	82.5 0.72	Max. tract Max. com	ion	: 108 lb : 147 lb	
		:	<u>Drive 6</u> 6204			Non drive end 6202 ZZ		
		1.00 SFA	V'R - - 3.50A		obil Polyrex I	Without Bearing - EM	Seal	
Sealing Lubrication interva Lubricant amount Lubricant type Notes USABLE @208V 3	6.50A SF	ancel the	- 3.50A previous one	e, which	These are	EM	Seal based on tests wit e tolerances stipul	
Sealing Lubrication interva Lubricant amount Lubricant type Notes USABLE @208V 3 This revision replace must be eliminated (1) Looking the mo (2) Measured at 1n (3) Approximate we manufacturing proc (4) At 100% of full	8.50A SF ces and c l. tor from t n and witl eight subj cess.	ancel the he shaft e h toleranco ject to cha	- 3.50A 3.50A previous one end. e of +3dB(A) inges after	e, which	These are power su	EM	based on tests wit e tolerances stipu	lated in NEMA
Sealing Lubrication interva Lubricant amount Lubricant type Notes USABLE @208V 3 This revision replace must be eliminated (1) Looking the mo (2) Measured at 1n (3) Approximate we manufacturing proc (4) At 100% of full	8.50A SF ces and c l. tor from t n and witl eight subj cess.	ancel the he shaft e h toleranco ject to cha	- 3.50A 3.50A previous one ind. e of +3dB(A)	e, which	These are power su	EM	based on tests wit	
Sealing Lubrication interva Lubricant amount Lubricant type Notes USABLE @208V 3 This revision replace must be eliminated (1) Looking the mo (2) Measured at 1n (3) Approximate we manufacturing proc (4) At 100% of full	8.50A SF ces and c l. tor from t n and witl eight subj cess.	ancel the he shaft e h toleranco ject to cha	- 3.50A 3.50A previous one end. e of +3dB(A) inges after	e, which	These are power su	EM	based on tests wit e tolerances stipu	lated in NEMA


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice


Subject to change without notice


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice

Subject to change without notice

Subject to change without notice

WEG's property. Forbidden reproduction without previous authorization.

_]
		0.157	062 +17 874 ±0.008		
					Dimensions in inches
	EVEQUITED				
ED STEEL PREM.	EXECUTED			DATE	VER
		WDD		ШВ	A3
Produc	t Engineering	SHEET	1 / 1		XME

US LISTED COUS SAFE AREA Energy verified	For 60H2: Class I, Zone 2, IIC Class I, DIV.2, Gr. A,B,C,D - T3 DIV 2 Inverter Duty (5F1.00) CT 2:1/17 1000:1	3 Hz 60 HP 10 6HC KW 0.75 FY CONT. V 230460 FY 000 ma.st. FF 3.3611.82 FIL 90.20380.4182 FIL FF 0.72 ABLE 2008 3.50A ABLE 2008 3.60A SALA3801.87.130 Internation ABLE 2008 4.23A ABLE 2008 4.23A ABLE 2004.22 MOBIL POLYREX EM 11.81U COL TO COL TO ABLE CODA1 SCA-22 MOBIL POLYREX EM COL TO CH TO CH TO ABC TO ABC TO SCA-22 MOBIL POLYREX EM <th>ROTATION References references references references devices references</th>	ROTATION References references references references devices references
-0 B		HP 1.5 V 230.460 A 3.16/1.58 SFA 3.63/1.82 SF 1.15 SF 1.15	INTERCIANCE ANY TWO LINE WREES TO EXCREDE THE ROTATION MARNING, MACHINE WREES TO EXCREDE THE ROTATION and national electrical codes to preven refronts eventical another. Discontest power source before sarriding unit. A Control Sector Sector Source to anoth of the wree to conforminent aux codes Boerdiques Iocaux en fut d'invite tou aboo éventique grave. Decontrecta l'alimentation avait femenden de la machine
	1 CC029A 0X ET3E56C-S	Hz 50 Hz	a ANY TWO LINE I BE ANY TWO LINE I attornal electrical of cks. Disconnect po cks. Disconnect po AVERTISSEMENT: a Déconnector fai
B	MADE IN MEXICO MAT: 14797781 CC029/ W01.TE0IC0X0X MODEL 00112ET3E56C-S	PH 3 PH 64 DUTY CONT. DUTY CONT. DUTY CONT. DUTY CONT. ALT 1000 m.a.sl ALT DOE DE ALT 1000 m.a.sl ALT DOE DE ALD ALL 1000 m.a.sl ALT DE ALD ALLERIATE RATING: STABA ALTERNATE RATING: DE ALTERNATE RATING: ALTERNATE RATING: SALE @ DOE DOE DOE OM AC T T T T T T T	INTERCHAIN NARWIN and 1 sho conformément aux s choc électrique grax