WARNING

This device is designed for connection to hazardous electric voltages. Ignoring this warning can result in severe personal injury or mechanical damage. To avoid the risk of electric shock and fire, the safety instructions of this manual must be observed and the guidelines followed. The specifications must not be exceeded, and the device must only be applied as described in the following. Prior to the commissioning of the device, this manual must be examined carefully. Only qualified personnel (technicians) should install this device. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

WARNING

Until the device is fixed, do not connect hazardous voltages to the device. The following operations should only be carried out on a disconnected device and under ESD safe conditions:
- General mounting, connection and disconnection of wires.
- Troubleshooting the device.

WARNING

To keep the safety distances, the relay contacts on the device must not be connected to both hazardous and non-hazardous voltages at the same time. SCU-1600 must be mounted on a DIN rail according to DIN 46277.

WARNING

Do not open the front plate of the device as this will cause damage to the connector for the display / programming front SCU-PDM1. This device contains no DIP-switches or jumpers.
SYMBOL IDENTIFICATION

The CE mark proves the compliance of the device with the essential requirements of the directives.

The double insulation symbol shows that the device is protected by double or reinforced insulation.

SAFETY INSTRUCTIONS

DEFINITIONS
Hazardous voltages have been defined as the ranges: 75 to 1500 Volt DC, and 50 to 1000 Volt AC.
Technicians are qualified persons educated or trained to mount, operate, and also troubleshoot technically correct and in accordance with safety regulations. Operators, being familiar with the contents of this manual, adjust and operate the knobs or potentiometers during normal operation.

RECEIPT AND UNPACKING
Unpack the device without damaging it. The packing should always follow the device until this has been permanently mounted. Check at the receipt of the device whether the type corresponds to the one ordered.

ENVIRONMENT
Avoid direct sunlight, dust, high temperatures, mechanical vibrations and shock, as well as rain and heavy moisture. If necessary, heating in excess of the stated limits for ambient temperatures should be avoided by way of ventilation. All devices fall under Installation Category II, Pollution Degree 1, and Insulation Class II.

MOUNTING
Only technicians who are familiar with the technical terms, warnings, and instructions in the manual and who are able to follow these should connect the device. Should there be any doubt as to the correct handling of the device, please contact:

www.automationdirect.com
Mounting and connection of the device should comply with national legislation for mounting of electric materials, i.e. wire cross section, protective fuse, and location. Descriptions of input / output and supply connections are shown in the block diagram and side label.

The following apply to fixed hazardous voltages-connected devices:

- The max. size of the protective fuse is 10 A and, together with a power switch, it should be easily accessible and close to the device. The power switch should be marked with a label indicating that it will switch off the voltage to the device.

Year of manufacture can be taken from the first two digits in the serial number.

UL INSTALLATION REQUIREMENTS

Use 60/75°C copper conducters only

For use only in pollution degree 2 or better

Max. ambient temperature 60°C

Max. wire size .. AWG 26-14

UL file number ... E191072

CALIBRATION AND ADJUSTMENT

During calibration and adjustment, the measuring and connection of external voltages must be carried out according to the specifications of this manual. The technician must use tools and instruments that are safe to use.

NORMAL OPERATION

Operators are only allowed to adjust and operate devices that are safely fixed in panels, etc., thus avoiding the danger of personal injury and damage. This means there is no electrical shock hazard, and the device is easily accessible.

CLEANING

When disconnected, the device may be cleaned with a cloth moistened with distilled water.
HOW TO DETACH SCU-1600

First, remember to detach the connectors with hazardous voltages.

Picture 1:
Detach the device from the DIN rail by lifting the bottom lock.

When front LED lights red / display shows AO.ER
SCU-1600 is designed as a SIL 2 device with a high safety level. Therefore, a continuous measurement of the outgoing current is carried out on a 4...20 mA and 20...4 mA output signal. If the current output signal is different from the internal calculated output value or the current output is 0 (due to e.g. an open circuit breakage), an error mode switches on the red front LED and disables the relays. This function is not a default option but must be actively selected via the programming menu (S4-20 & S20-4). The error mode can only be reset by switching off and then switching on the supply voltage to the device.
UNIVERSAL TRANSMITTER
SCU-1600

• Input for RTD, TC, Ohm, potentiometer, mA and V
• 2-wire supply > 16 V
• FM-approved for installation in Div. 2
• Output for current, voltage and 2 relays
• Universal AC or DC supply

Advanced features
• Programmable via detachable display front (SCU-PDM1), process calibration, signal and relay simulation, password protection, error diagnostics and selection of help text in several languages.

Application
• Linearised, electronic temperature measurement with RTD or TC sensor.
• Conversion of linear resistance variation to a standard analogue current / voltage signal, i.e. from solenoids and butterfly valves or linear movements with attached potentiometer.
• Power supply and signal isolator for 2-wire transmitters.
• Process control with 2 pairs of potential-free relay contacts and analogue output.
• Galvanic separation of analogue signals and measurement of floating signals.
• The SCU-1600 is designed according to strict safety requirements and is thus suitable for application in SIL 2 installations.

Technical characteristics
• When SCU-1600 is used in combination with the SCU-PDM1 display / programming front, all operational parameters can be modified to suit any application. As the SCU-1600 is designed with electronic hardware switches, it is not necessary to open the device for setting of DIP switches.
• A green / red front LED indicates normal operation and malfunction. A yellow LED is ON for each active output relay.
• Continuous check of vital stored data for safety reasons.
• 4-port 2.3 kVAC galvanic isolation.
Functionality

The simple and easily understandable menu structure and the explanatory help texts guide you effortlessly and automatically through the configuration steps, thus making the product very easy to use. Functions and configuration options are described in the section “Configuration / operating the function keys”.

Application

- Communications interface for modification of operational parameters in SCU-1600.
- Can be moved from one SCU-1600 device to another and download the configuration of the first transmitter to subsequent transmitters.
- Fixed display for readout of process data and status.

Technical characteristics

- LCD display with 4 lines; Line 1 (H=5.57 mm) shows input signal, line 2 (H=3.33 mm) shows units, line 3 (H=3.33 mm) shows analog output or tag no. and line 4 shows communication and relay status.
- Programming access can be blocked by assigning a password. The password is saved in the transmitter in order to ensure a high degree of protection against unauthorised modifications to the configuration.

Mounting / installation

- Click SCU-PDM1 onto the front of SCU-1600.
MOUNTING / DEMOUNTING THE SCU-PDM1

1: Insert the taps of SCU-PDM1 into the holes at the top of the device.
2: Swing SCU-PDM1 into place.

Demounting of SCU-PDM1
3: Push the release button on the bottom of SCU-PDM1 and swing SCU-PDM1 up. Note: Can be installed or removed whether the signal conditioner is powered or not.
APPLICATIONS

Input signals:

Current | Voltage | Potentiometer | RTD and lin.R | TC

Output signals:

Relays

Analog, 0/4...20 mA and voltage

Supply:

21.6...253 VAC or 19.2...300 VDC

*Order separately: SCU-CJC1 Optional External CJC connector. See the connection drawing on page 16.

SCU-1600
Part Numbers

SCU-1600 = Universal transmitter
SCU-PDM1 = Display / programming front
SCU-CJC1 = Optional External CJC connector

Electrical specifications

Environmental conditions
Specifications range ... -20°C...60°C (-4°F...140°F)
Calibration temperature 20...28°C (68°F...82.4°F)
Relative humidity .. < 95% RH (non-cond.)
Protection degree ... IP20

Mechanical specifications
Dimensions (HxWxD) ... 109 x 23.5 x 104 mm
(4.3 x 0.9 x 4.1 in)
Dimensions, with SCU-PDM1 (HxWxD) 109 x 23.5 x 116 / 131 mm
(4.3 x 0.9 x 4.6 / 5.2 in)
Weight .. 170 g
Weight with SCU-PDM1 185 g / 270 g
Max. wire size .. 1 x 2.5 mm² (14 AWG) stranded wire
Screw terminal torque .. 0.5 Nm (0.37 ft lb)
Vibration .. IEC 60068-2-6 : 2007
 2...13.2 Hz .. ±1 mm
 13.2...100 Hz .. ±0.7 g

Common specifications
Supply voltage, universal 21.6...253 VAC, 50...60 Hz
 or 19.2...300 VDC
Max. consumption ... ≤ 2.5 W
Fuse ... 400 mA SB / 250 VAC
Isolation voltage, test / operation 2.3 kVAC / 250 VAC
Communications interface Programming front SCU-PDM1
Signal / noise ratio .. Min. 60 dB (0...100 kHz)
Response time (0...90%, 100...10%):
 Temperature input .. ≤ 1 s
 mA / V input .. ≤ 400 ms

Accuracy, the greater of the general and basic values:

<table>
<thead>
<tr>
<th>Input type</th>
<th>Absolute accuracy</th>
<th>Temperature coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>≤ ±0.1% of span</td>
<td>≤ ±0.01% of span / °C</td>
</tr>
</tbody>
</table>
Auxiliary supplies:

- 2-wire supply (terminal 44...43)................. 25...16 VDC / 0...20 mA

RTD, linear resistance and potentiometer input

- Input for RTD types:
 - Pt10, Pt20, Pt50, Pt100, Pt200, PT250, Pt300, Pt400, Pt500, Pt1000
 - Ni50, Ni100, Ni120, Ni1000, Cu10, Cu20, Cu50, Cu100

<table>
<thead>
<tr>
<th>Input type</th>
<th>Min. value</th>
<th>Max. value</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt10...Pt1000</td>
<td>-200°C</td>
<td>+850°C</td>
<td>IEC 60751</td>
</tr>
<tr>
<td>Ni50...Ni1000</td>
<td>-60°C</td>
<td>+250°C</td>
<td>DIN 43760</td>
</tr>
<tr>
<td>Cu10...Cu100</td>
<td>-200°C</td>
<td>+260°C</td>
<td>α = 0.00427</td>
</tr>
<tr>
<td>Lin. R</td>
<td>0 Ω</td>
<td>10000 Ω</td>
<td>-</td>
</tr>
<tr>
<td>Potentiometer</td>
<td>10 Ω</td>
<td>100 kΩ</td>
<td>-</td>
</tr>
</tbody>
</table>

Basic values

<table>
<thead>
<tr>
<th>Input type</th>
<th>Basic accuracy</th>
<th>Temperature coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA</td>
<td>≤ ±4 µA</td>
<td>≤ ±0.4 µA / °C</td>
</tr>
<tr>
<td>Volt</td>
<td>≤ ±20 µV</td>
<td>≤ ±2 µV / °C</td>
</tr>
<tr>
<td>Pt100</td>
<td>≤ ±0.2°C</td>
<td>≤ ±0.01°C / °C</td>
</tr>
<tr>
<td>Linear resistance</td>
<td>≤ ±0.1 Ω</td>
<td>≤ ±0.01 Ω / °C</td>
</tr>
<tr>
<td>Potentiometer</td>
<td>≤ ±0.1 Ω</td>
<td>≤ ±0.01 Ω / °C</td>
</tr>
<tr>
<td>TC type: E, J, K, L, N, T, U</td>
<td>≤ ±1°C</td>
<td>≤ ±0.05°C / °C</td>
</tr>
<tr>
<td>TC type: R, S, W3, W5, LR</td>
<td>≤ ±2°C</td>
<td>≤ ±0.2°C / °C</td>
</tr>
<tr>
<td>TC type: B 85...200°C</td>
<td>≤ ±4°C</td>
<td>≤ ±0.4°C / °C</td>
</tr>
<tr>
<td>TC type: B 200...1820°C</td>
<td>≤ ±2°C</td>
<td>≤ ±0.2°C / °C</td>
</tr>
</tbody>
</table>

EMC immunity influence............................< ±0.5% of span

Extended EMC immunity:

NAMUR NE 21, A criterion, burst< ±1% of span
TC input

<table>
<thead>
<tr>
<th>Type</th>
<th>Min. value</th>
<th>Max. value</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0°C</td>
<td>+1820°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>E</td>
<td>-100°C</td>
<td>+1000°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>J</td>
<td>-100°C</td>
<td>+1200°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>K</td>
<td>-180°C</td>
<td>+1372°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>L</td>
<td>-200°C</td>
<td>+900°C</td>
<td>DIN 43710</td>
</tr>
<tr>
<td>N</td>
<td>-180°C</td>
<td>+1300°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>R</td>
<td>-50°C</td>
<td>+1760°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>S</td>
<td>-50°C</td>
<td>+1760°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>T</td>
<td>-200°C</td>
<td>+400°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>U</td>
<td>-200°C</td>
<td>+600°C</td>
<td>DIN 43710</td>
</tr>
<tr>
<td>W3</td>
<td>0°C</td>
<td>+2300°C</td>
<td>ASTM E988-90</td>
</tr>
<tr>
<td>W5</td>
<td>0°C</td>
<td>+2300°C</td>
<td>ASTM E988-90</td>
</tr>
<tr>
<td>LR</td>
<td>-200°C</td>
<td>+800°C</td>
<td>GOST 3044-84</td>
</tr>
</tbody>
</table>

Cold junction compensation (CJC):
- via external sensor in connector SCU-CJC1: 20...28°C ≤ ±1°C
 -20...20°C / 28...70°C ≤ ±2°C
- via internal CJC sensor: ±(2.0°C + 0.4°C * Δt)
 Δt = internal temperature - ambient temperature

Sensor error detection, all TC types: Yes

Sensor error current:
- when detecting: Nom. 2 μA
- else: 0 μA

Current input
- Measurement range: 0...20 mA
- Programmable measurement ranges: 0...20 and 4...20 mA
- Input resistance: Nom. 20 Ω + PTC 50 Ω
- Sensor error detection:
 - Loop break 4...20 mA: Yes

Voltage input
- Measurement range: 0...12 VDC
- Programmable measurement ranges: 0...1 / 0.2...1 / 0...5 / 1...5 / 0...10 and 2...10 VDC
- Input resistance: Nom. 10 MΩ
Current output
Signal range (span) .. 0...20 mA
Programmable signal ranges 0...20 / 4...20 / 20...0 and 20...4 mA
Load (max.) .. 20 mA / 800 Ω / 16 VDC
Load stability .. ≤ 0.01% of span / 100 Ω
Sensor error detection 0 / 3.5 / 23 mA / none
NAMUR NE 43 Upscale / Downscale 23 mA / 3.5 mA
Output limitation:
 on 4...20 and 20...4 mA signals 3.8...20.5 mA
 on 0...20 and 20...0 mA signals 0...20.5 mA
Current limit .. ≤ 28 mA

Voltage output
Signal range .. 0...10 VDC
Programmable signal ranges 0...1 / 0.2...1 / 0...10 / 0...5 /
 1...5 / 2...10 / 1...0 / 1...0.2 / 5...0 /
 5...1 / 10...0 og 10...2 V
Load (min.) .. 500 kΩ

Relay outputs
Relay functions ... Setpoint, Window, Sensor error,
 Latch, Power and Off
Hysteresis ... 0...100%
On and Off delay .. 0...3600 s
Sensor error detection Break / Make / Hold
Max. voltage ... 250 VRMS
Max. current ... 2 A / AC or 1 A / DC
Max. AC power ... 500 VA

I.S. approval
FM, applicable in ... Class I, Div. 2, Group A, B, C, D
 Class I, Div. 2, Group IIIC
 Zone 2
Max. ambient temperature for T5 60°C

Observed authority requirements
EMC 2004/108/EC ... EN 61326-1
LVD 2006/95/EC .. EN 61010-1
FM ... 3600, 3611, 3810 and ISA 61010-1
UL, Standard for Safety UL 508

of span = of the currently selected measurement range
Visualization in the SCU-PDM1 of sensor error detection and input signal outside range

Sensor error check:

<table>
<thead>
<tr>
<th>Device: SCU-1600</th>
<th>Configuration</th>
<th>Sensor error detection:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1, ERR.ACT=NONE - R2, ERR.ACT=NONE, OUT.ERR=NONE.</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Else:</td>
<td>ON</td>
</tr>
</tbody>
</table>

Outside range readout (IN.LO, IN.HI):
If the valid range of the A/D converter or the polynomial is exceeded

<table>
<thead>
<tr>
<th>Input</th>
<th>Range</th>
<th>Readout</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT</td>
<td>0...1 V / 0.2...1 V</td>
<td>IN.LO</td>
<td>< -25 mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>> 1.2 V</td>
</tr>
<tr>
<td></td>
<td>0...10 V / 2...10 V</td>
<td>IN.LO</td>
<td>< -25 mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>> 12 V</td>
</tr>
<tr>
<td>CURR</td>
<td>0...20 mA / 4...20 mA</td>
<td>IN.LO</td>
<td>< -1.05 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>> 25.05 mA</td>
</tr>
<tr>
<td>LIN.R</td>
<td>0...800 Ω</td>
<td>IN.LO</td>
<td>< 0 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>> 1075 Ω</td>
</tr>
<tr>
<td></td>
<td>0...10 kΩ</td>
<td>IN.LO</td>
<td>< 0 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>< 110 kΩ</td>
</tr>
<tr>
<td>POTM</td>
<td>-</td>
<td>IN.LO</td>
<td>< -0.5 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>> 100.5 %</td>
</tr>
<tr>
<td>TEMP</td>
<td>TC / RTD</td>
<td>IN.LO</td>
<td>< temperature range -2°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>> temperature range +2°C</td>
</tr>
</tbody>
</table>

Display readout below min.- / above max. (-1999, 9999):

<table>
<thead>
<tr>
<th>Input</th>
<th>Range</th>
<th>Readout</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>-1999</td>
<td>Display readout < -1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9999</td>
<td>Display readout > 9999</td>
</tr>
</tbody>
</table>

Sensor error detection limits

<table>
<thead>
<tr>
<th>Input</th>
<th>Range</th>
<th>Sensor error detection (SE.BR, SE.SH):</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURR</td>
<td>Loop break (4..20 mA)</td>
<td>SE.BR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>读物</td>
</tr>
<tr>
<td>POTM</td>
<td>All, SE.BR on all 3-wire</td>
<td>SE.BR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>读物</td>
</tr>
<tr>
<td>LIN.R</td>
<td>0...800 Ω</td>
<td>SE.BR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>读物</td>
</tr>
<tr>
<td></td>
<td>0...10 kΩ</td>
<td>SE.BR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>读物</td>
</tr>
<tr>
<td>TEMP</td>
<td>TC</td>
<td>SE.BR</td>
</tr>
<tr>
<td></td>
<td>RTD, 2-, 3-, and 4-wire</td>
<td>SE.BR</td>
</tr>
<tr>
<td></td>
<td>No SE.SH for Cuxx, Pt10, Pt20 and Pt50</td>
<td>SE.SH</td>
</tr>
</tbody>
</table>

14 SCU-1600
Error indications

<table>
<thead>
<tr>
<th>Error search</th>
<th>Readout</th>
<th>Error cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test of internal CJC sensor</td>
<td>CJ.ER</td>
<td>CJC sensor defect or temperature outside range</td>
</tr>
<tr>
<td>Checksum test of the configuration in FLASH</td>
<td>FL.ER</td>
<td>Error in FLASH</td>
</tr>
<tr>
<td>Check measurement of analog output current</td>
<td>AO.ER</td>
<td>1) No load on the current output (only S4..20/S20..4 mA)</td>
</tr>
<tr>
<td>Communications test SCU-PDM1 / SCU-1600</td>
<td>NO.CO</td>
<td>Connection error</td>
</tr>
<tr>
<td>Internal communication error</td>
<td>NO.OU</td>
<td>Output controller error</td>
</tr>
<tr>
<td>Check that input signal matches input configuration</td>
<td>IN.ER</td>
<td>1) Error levels on input</td>
</tr>
<tr>
<td>Check that saved configuration in SCU-PDM1 matches device</td>
<td>TY.ER</td>
<td>Configuration is not SCU-1600</td>
</tr>
</tbody>
</table>

Error indications in the display flash once per second. The help text explains the error.
1) The error is reset by switching off and then switching on the supply voltage to the device.
CONNECTIONS

Supply:

Inputs:

- RTD, 2-wire
 41 42 43 44
- RTD, 3-/4-wire
 41 42 43 44
- TC, internal CJC sensor
 41 42 43 44
- Resistance, 2-wire
 41 42 43 44
 + -

- Resistance, 3-/4-wire
 41 42 43 44

- Potentiometer
 41 42 43 44

- 2-wire transmitter
 41 42 43 44
 - Tx +

- Voltage
 41 42 43 44
 - +

- Current
 41 42 CJC 44
 *TC, CJC connector
 +

- * Order separately: Optional External CJC connector SCU-CJC1

Outputs:

- Current
 11 12 13 14
 - mA +

- Voltage, 1 V
 11 12 13 14
 - V +

- Voltage, 10 V
 11 12 13 14
 - V +

- Relays
 R1 R2
CONFIGURATION / OPERATING THE FUNCTION KEYS

Documentation for routing diagram.

In general

When configuring the SCU-1600, you will be guided through all parameters and you can choose the settings which fit the application. For each menu there is a scrolling help text which is automatically shown in line 3 on the display.

Configuration is carried out by use of the 3 function keys:

- 🔼 will increase the numerical value or choose the next parameter
- ◀ will decrease the numerical value or choose the previous parameter
- ✅ will accept the chosen value and proceed to the next menu

When configuration is completed, the display will return to the default state 1.0.

Pressing and holding ✅ will return to the previous menu or return to the default state (1.0) without saving the changed values or parameters.

If no key is activated for 1 minute, the display will return to the default state (1.0) without saving the changed values or parameters.

Further explanations

Fast setpoint adjustment and relay test: These menus allow you to make a quick setpoint change and relay test when the FastSet menu is activated. This function can only be activated when the relays are set for setpoint function and are controlled by a setpoint.

Pressing 🔼 and ◀ simultaneously will activate a relay test and change the state of the relay.

Pressing ✅ will save the setpoint change.

Holding down ✅ for more than 1 second will return the unit to the default state without saving the setpoint change.

Password protection: Programming access can be blocked by assigning a password. The password is saved in the transmitter in order to ensure a high degree of protection against unauthorized modifications to the configuration. Default password 2008 allows access to all configuration menus.
Signal and sensor error info via display front SCU-PDM1

Sensor error (see limits in the table) is displayed as SE.BR (sensor break) or SE.SH (sensor short). Signals outside the selected range (not sensor error, see table for limits) are displayed as IN.LO indicating low input signal or IN.HI indicating high input signal. The error indication is displayed in line 3 as text and at the same time the backlight flashes. Line 4 of the display is a status line which displays status of relay 1 and relay 2, COM (flashing bullet) indicating correct functioning of SCU-PDM1 and arrow up/down which indicates tendency readout of the input signal. If the figure 1 or figure 2 flashes, the unit has detected that the setpoint has been exceeded and that the relay is in “delay” mode. When the delay time has passed and the relay makes/breaks, the relay sign either displays or disappears.

Signal and sensor error indication without display front

Status of the unit can also be read from the red/green LED in the front of the device.
- Green flashing LED 13 Hz indicates normal operation.
- Green flashing LED 1 Hz indicates sensor error.
- Steady red LED indicates internal error.

Relay functions

6 different settings of relay function can be selected.

Setpoint: The unit works as a single limit switch

Window: The relay has a window that is defined by a low and a high setpoint. On both sides of the window the relay has the same status.

Error function: The relay is activated by sensor error.

Power: The relay is activated as long as the power is on.

Off: The relay is deactivated.

Latch: The relay is latched. Only valid for setpoint and window function.

Increasing/decreasing: The relays can be set to activate at increasing or decreasing input signal.

Delay: An ON and an OFF delay can be set on both relays in the range 0...3600 s.

Hysteresis: 0.0...100.0%.
Latch

When the setpoint is exceeded the relay outputs enters an alarm state. The latch function of the SCU-1600 will hold the relays in this state until the function is deactivated manually. The latch function can be applied when the relay function setpoint or window is selected.

The latch function can be selected separately for each relay output. If the configuration is copied from one device to another by way of the SCU-PDM1, the latch function must be reconfigured.

The latch function activates and holds the relays when the input signal rises above or falls below the selected setpoints and the relay action has been selected as increasing or decreasing.

The window function is selected by choosing “window” in the menu and defining a high and a low setpoint.

It can be selected for each relay contact whether the contact is open or closed inside the window. This selection is made in the menu R1.cont and R2.cont.

The setpoint function is selected by choosing “setpoint” in the menu and entering the desired limit. The device then works as a single limit switch.

An activated relay means that the contact is closed if the contact function “normally open” is selected, and the contact is open if the contact function “normally closed” is selected.

The delay time for activation and deactivation can be set independently of each other in the menus ON.DEL and OFF DEL respectively.

If the relay function “Error” is active, the relay will latch when a sensor error occurs and will not be deactivated automatically when the sensor error is rectified.

The relay can only be deactivated by an operator and only when the normal conditions for deactivation are met. If the input signal still has a value that will activate the relay, the relay will latch again.

See the graphic depiction of the setpoint and window functions on pages 32 and 33.
Manual deactivation of the latch function

If the relay outputs are activated and thereby latched, it will be indicated in the display. The backlight flashes and the scrolling help text tells you how to deactivate the output. Manual deactivation is carried out by way of the front buttons on the SCU-PDM1. Use ▲ and ▼ to navigate in the menu and ✐ to validate your selection. If the password protection has been activated, the password must be entered in order to access the deactivation menu. See the menu structure on page 29.

Advanced functions

The device gives access to a number of advanced functions which can be reached by answering “Yes” to the point “adv.set”.

Display setup: Here you can adjust the brightness contrast and the backlight.
Setup of TAG numbers with 6 alphanumerics. Selection of functional readout in line 3 of the display - choose between readout of analogue output or tag no.

Two-point process calibration: The device can be process-calibrated in 2 points to fit a given input signal. A low input signal (not necessarily 0%) is applied and the actual value is entered via SCU-PDM1. Then a high signal (not necessarily 100%) is applied and the actual value is entered via SCU-PDM1. If you accept to use the calibration, the device will work according to this new adjustment. If you later reject this menu point or choose another type of input signal the device will return to factory calibration.

Process simulation function: If you agree to the point “EN.SIM” it is possible to simulate an input signal by means of the arrow keys and thus control the output signal up or down. When you finalize the point with ✐, the device returns to normal mode. The following point allows you to activate relay 1 and relay 2 by means of the arrow-keys up/down. You must exit the menu by pressing ✐ (no time-out).

Password: Here you can choose a password between 0000 and 9999 in order to protect the device against unauthorized modifications to the configuration. The device is delivered default without password. If you have locked the device with a password by mistake, you can always open the menu by using the master password 2008.

Language: In the menu “lang.setup” you can choose between 7 different language versions of help texts that will appear in the menu. You can choose between UK, DE, FR, IT, ES, SE and DK.
Auto diagnosis
The device performs an advanced auto diagnosis of the internal circuits.

The following possible errors can be displayed in the front unit SCU-PDM1:

CJ.ER - CJC sensor defect or CJC temperature outside range
FL.ER - Flash error
AO.ER - No load on the current output (only for S4...20 mA / S20...4 mA)
NO.CO - Connection error
IN.ER - Error levels on input
TY.ER - Configuration in SCU-PDM1 does not match this product type
Selection of units

After choosing the input signal type you can choose which process units should be displayed in text line 2 (see table). By selection of temperature input the process value is always displayed in Celsius or Fahrenheit. This is selected in the menu point after selection of temperature input.

Safety readback

When the device is delivered with default configuration, the SIL function is disabled. The safety readback function (loop surveillance) can be selected in the menu O.RANGE, thus enabling the device to run in SIL mode. In order to enable the SIL functionality, the menu item S4...20 mA must be selected. Please note, however, that when safety readback is enabled, a sensor error will be indicated as an error on the analog output signal.

CJC

In the CJC menu you can choose between CJC connector and internal cold junction compensation. The CJC connector (SCU-CJC1) must be ordered separately.

Memory

In the memory menu you can save the configuration of the device in the SCU-PDM1, and then move the SCU-PDM1 onto another device of the same type and download the configuration in the new device.
1.0 = Default state
Line 1 shows input signal.
Line 2 shows UNIT.
By pressing ▲ and ▼ simultaneously line 3 alternates between A.Out and TAG.
Line 4 shows relay and communication status.

1.1 = Only if password-protected.
1.2 = Only if FastSet is activated and the relay function is setpoint.
1.3 = Not valid for these input signals: 0...20 mA and voltage.
1.4 = Only if input signal is temperaure.
1.5 = The relay can only be deactivated by an operator and only if the normal conditions for deactivation are met.
If the input signal still has a value that will activate the relay, the relay will latch again.

Continued on the page Routing diagram ADV.SET
If no key is activated for 1 minute, the display will return to the default state 1.0 without saving configuration changes.

△ Increase value / choose next parameter
▽ Decrease value / choose previous parameter
 أمس Accept the chosen value and proceed to the next menu
Hold ◎ Back to previous menu / return to menu 1.0 without saving

Selectable UNITS:

- °C
- °F
- °C

SCU-1600
2.0 In the submenu simulation (SIM) you must press \(\text{OK} \) to return to the default state 1.0.
ROUTING DIAGRAM
Manual deactivation of the latch function

To setup menu

R1 reset

R2 reset

To default state 1.0
[01] Set correct password
[02] Enter advanced setup menu?
[03] Select temperature input
 Select potentiometer input
 Select linear resistance input
 Select current input
 Select voltage input
[04] Select 0.0-1 V input range
 Select 0.2-1 V input range
 Select 0-5 V input range
 Select 1-5 V input range
 Select 0-10 V input range
 Select 2-10 V input range
[05] Select 0-20 mA input range
 Select 4-20 mA input range
[06] Select 2-wire sensor connection
 Select 3-wire sensor connection
 Select 4-wire sensor connection
[07] Set resistance value low
[08] Set resistance value high
[09] Select Celsius as temperature unit
 Select Fahrenheit as temperature unit
[10] Select TC sensor type
 Select Ni sensor type
 Select Pt sensor type
 Select Cu sensor type
[11] Select display unit
[12] Select decimal point position
[13] Set display range low
[14] Set display range high
[15] Set relays in % of input range
 Set relays in display units
[16] Select Pt10 as sensor type
 Select Pt20 as sensor type
 Select Pt50 as sensor type
 Select Pt100 as sensor type
 Select Pt200 as sensor type
 Select Pt250 as sensor type
 Select Pt300 as sensor type
 Select Pt400 as sensor type
 Select Pt500 as sensor type
 Select Pt1000 as sensor type
[17] Select Ni50 as sensor type
 Select Ni100 as sensor type
 Select Ni20 as sensor type
 Select Ni1000 as sensor type
[18] Select Cu10 as sensor type
 Select Cu20 as sensor type
 Select Cu50 as sensor type
 Select Cu100 as sensor type
 Select TC-B as sensor type
 Select TC-E as sensor type
 Select TC-J as sensor type
 Select TC-K as sensor type
 Select TC-L as sensor type
 Select TC-N as sensor type
 Select TC-R as sensor type
 Select TC-S as sensor type
 Select TC-T as sensor type
 Select TC-U as sensor type
 Select TC-W3 as sensor type
 Select TC-W5 as sensor type
 Select TC-Lr as sensor type
[19] Select OFF function - relay is permanently off
 Select POWER function - relay indicates power status OK
 Select ERROR function - relay indicates sensor error only
 Select WINDOW function - relay controlled by 2 setpoints
 Select SETPOINT function - relay controlled by 1 setpoint
[20] Select Normally Closed contact
 Select Normally Open contact
[21] Set relay setpoint
[22] Activate relay on decreasing signal
 Activate relay on increasing signal
[23] Set relay hysteresis
[24] No error action - undefined status at error
 Open relay contact at error
 Close relay contact at error
 Hold relay status at error
[25] Set relay ON delay in seconds
[26] Set relay OFF delay in seconds
[27] Relay contact is Closed Inside Window
 Relay contact is Open Inside Window
[28] Set relay window setpoint high
[29] Set relay window setpoint low
[30] Set relay window hysteresis
[31] No error action - undefined status at error
 Open relay contact at error
 Close relay contact at error
 Hold relay status at error
[32] Set relay ON delay in seconds
[33] Set relay OFF delay in seconds
[34] Open relay contact at error
 Close relay contact at error
[35] Select current as analogue output type
 Select voltage as analogue output type
[36] Select 0-20 mA output range
 Select 4-20 mA output range
 Select 5-20 mA with safety readback
 Select 20-0 mA output range
 Select 20-4 mA output range
 Select 5-20 mA with safety readback
[37] Select 0-20 mA output range
 Select 4-20 mA output range
[38] Select no error action - output undefined at error
 Select NAMUR NE43 downscale at error
 Select NAMUR NE43 upscale at error
[39] Select 0.0-1 V output range
 Select 0.2-1 V output range
 Select 0-5 V output range
 Select 1-5 V output range
 Select 0-10 V output range
 Select 2-10 V output range
[40] Select 0-10 V output range
 Select 2-10 V output range
[41] Set temperature for analogue output low
[42] Set temperature for analogue output high
[43] Enter password setup
 Enter simulation mode
 Perform process calibration
 Enter display setup
 Perform memory operations
 Enter relay latch setup

[44] Load saved configuration into SCU-1600
 Save SCU-1600 configuration in SCU-PDM1

[45] Adjust LCD contrast
[46] Adjust LCD backlight
[47] Write a 6-character device TAG
[48] Analogue output value is shown in display line 3
 Device TAG is shown in display line 3
[49] Calibrate input low to process value?
[50] Calibrate input high to process value?
[51] Enable simulation mode?
[52] Set the input simulation value
[53] Relay simulation - use ∧ and ∨ to toggle relay 1 and 2
[54] Enable password protection?
[55] Set new password
[56] Enable Fastset functionality?
[57] Relay setpoint - press ∨ to save
[58] Relay setpoint - Read only
[59] Select language
[60] Use process calibration values?
[61] Set value for low calibration point
[62] Set value for high calibration point
[63] Select CJC connector (accessory)
 Select internal temperature sensor
[64] Enable relay latch function?
[65] Relay is latched - press ∨ to acknowledge
 Relay 1 is latched - press ∧ to release
 Relay 2 is latched - press ∨ to release
 Relays are latched - press ∧ or ∨ to release relay 1 or relay 2
[66] Release relay? (if conditions allow)
[67] Enter setup menu? (latched relays may release)
Graphic depiction of latch function setpoint

Input signal

Setpoint (increasing)

Hysteresis

Time

Closed Relay contact (N.O.)
Open

Release not possible (setpoint still exceeded)
Release not possible (setpoint-hysteresis still exceeded)
Release not possible (OFF delay still exceeded)
Release possible (manual deactivation)

Relay latched
Graphic depiction of latch function window

- **Hysteresis**
 - Setpoint high
 - Setpoint low

- **Relay contact (N.O.)**
 - Closed
 - Open

- **Release not possible**
 - (still inside window)
 - (inside hysteresis)
 - (OFF delay still active)

- **Release possible**

- **Window**

- **Time**

- **ON delay**
 - OFF delay
 - Hysteresis
 - Setpoint low

- **SCU-1600 33**
Graphic depiction of relay action setpoint

Setpoint = 50
Hysteresis = 10

Setpoint = 50
Hysteresis = 10

Relay function: Window (shown for increasing signal)
Contact: Closed inside window = ①
Contact: Open inside window = ②

Relay function: Window (shown for decreasing signal)
Contact: Closed inside window = ①
Contact: Open inside window = ②