# UNIVERSAL TRANSMITTER

## SCU-1400

**CONTENTS**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>2</td>
</tr>
<tr>
<td>Symbol identification</td>
<td>3</td>
</tr>
<tr>
<td>Safety instructions</td>
<td>3</td>
</tr>
<tr>
<td>How To Detach SCU-1400</td>
<td>5</td>
</tr>
<tr>
<td>When front LED lights red / display shows AO.ER</td>
<td>5</td>
</tr>
<tr>
<td>Advanced features</td>
<td>6</td>
</tr>
<tr>
<td>Application</td>
<td>6</td>
</tr>
<tr>
<td>Technical characteristics</td>
<td>6</td>
</tr>
<tr>
<td>SCU-PDM1 display / programming front</td>
<td>7</td>
</tr>
<tr>
<td>Mounting / demounting the SCU-PDM1</td>
<td>8</td>
</tr>
<tr>
<td>Applications</td>
<td>9</td>
</tr>
<tr>
<td>Part Numbers</td>
<td>10</td>
</tr>
<tr>
<td>Electrical specifications</td>
<td>10</td>
</tr>
<tr>
<td>Display readout on the SCU-PDM1 of sensor error detection and input signal outside range</td>
<td>13</td>
</tr>
<tr>
<td>Sensor error detection limits</td>
<td>14</td>
</tr>
<tr>
<td>Error indications</td>
<td>14</td>
</tr>
<tr>
<td>Connections</td>
<td>15</td>
</tr>
<tr>
<td>Block diagram</td>
<td>16</td>
</tr>
<tr>
<td>Configuration / operating the function keys</td>
<td>17</td>
</tr>
<tr>
<td>Routing diagram</td>
<td>20</td>
</tr>
<tr>
<td>Routing diagram, Advanced settings (ADV.SET)</td>
<td>22</td>
</tr>
<tr>
<td>Scrolling help text in display line 3</td>
<td>23</td>
</tr>
</tbody>
</table>

SCU-1400
**GENERAL**

**WARNING**

This device is designed for connection to hazardous electric voltages. Ignoring this warning can result in severe personal injury or mechanical damage. To avoid the risk of electric shock and fire, the safety instructions of this manual must be observed and the guidelines followed. The specifications must not be exceeded, and the device must only be applied as described in the following. Prior to the commissioning of the device, this manual must be examined carefully. Only qualified personnel (technicians) should install this device. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

**HAZARDOUS VOLTAGE**

**WARNING**

Until the device is fixed, do not connect hazardous voltages to the device. The following operations should only be carried out on a disconnected device and under ESD safe conditions:
- General mounting, connection and disconnection of wires.
- Troubleshooting the device.

**INSTALLATION**

**WARNING**

SCU-1400 must be mounted on a DIN rail according to DIN 46277.

**WARNING**

Do not open the front plate of the module as this will cause damage to the connector for the display / programming front SCU-PDM1. This module contains no DIP-switches or jumpers.
**SYMBOL IDENTIFICATION**

- **Triangle with an exclamation mark**: Warning / demand. Potentially lethal situations.

- **The CE mark** proves the compliance of the device with the essential requirements of the directives.

- **The double insulation symbol** shows that the device is protected by double or reinforced insulation.

**SAFETY INSTRUCTIONS**

**DEFINITIONS**

- **Hazardous voltages** have been defined as the ranges: 75 to 1500 Volt DC, and 50 to 1000 Volt AC.
- **Technicians** are qualified persons educated or trained to mount, operate, and also troubleshoot technically correct and in accordance with safety regulations.
- **Operators**, being familiar with the contents of this manual, adjust and operate the knobs or potentiometers during normal operation.

**RECEIPT AND UNPACKING**

Unpack the module without damaging it. The packing should always follow the module until this has been permanently mounted.

Check at the receipt of the module whether the type corresponds to the one ordered.

**ENVIRONMENT**

Avoid direct sunlight, dust, high temperatures, mechanical vibrations and shock, as well as rain and heavy moisture. If necessary, heating in excess of the stated limits for ambient temperatures should be avoided by way of ventilation.

All devices fall under Installation Category II, Pollution Degree 1, and Insulation Class II.

**MOUNTING**

Only technicians who are familiar with the technical terms, warnings, and instructions in the manual and who are able to follow these should connect the device. Should there be any doubt as to the correct handling of the device, please contact:

[www.automationdirect.com](http://www.automationdirect.com)
Mounting and connection of the device should comply with national legislation for mounting of electric materials, i.e. wire cross section, protective fuse, and location. Descriptions of input / output and supply connections are shown in the block diagram and side label.

The following apply to fixed hazardous voltages-connected devices:
The max. size of the protective fuse is 10 A and, together with a power switch, it should be easily accessible and close to the device. The power switch should be marked with a label indicating that it will switch off the voltage to the device.

Year of manufacture can be taken from the first two digits in the serial number.

**UL INSTALLATION REQUIREMENTS**
Use 60/75°C copper conductors only
For use only in pollution degree 2 or better
Max. ambient temperature ...................... 60°C
Max. wire size ........................................... AWG 26-14
UL file number ...................................... E191072

**CALIBRATION AND ADJUSTMENT**
During calibration and adjustment, the measuring and connection of external voltages must be carried out according to the specifications of this manual. The technician must use tools and instruments that are safe to use.

**NORMAL OPERATION**
Operators are only allowed to adjust and operate devices that are safely fixed in panels, etc., thus avoiding the danger of personal injury and damage. This means there is no electrical shock hazard, and the device is easily accessible.

**CLEANING**
When disconnected, the device may be cleaned with a cloth moistened with distilled water.
HOW TO DETACH SCU-1400

First, remember to detach the connectors with hazardous voltages.

Picture 1:
Detach the device from the DIN rail by lifting the bottom lock.

When front LED lights red / display shows AO.ER

SCU-1400 is designed as a SIL 2 device with a high safety level. Therefore, a continuous measurement of the outgoing current is carried out on a 4…20 mA and 20…4 mA output signal. If the current output signal is different from the internal calculated output value or the current output is 0 (due to e.g. an open circuit breakage), an error mode switches on the red front LED. This function is not a default option but must be actively selected via the programming menu (S4-20 & S20-4). The error mode can only be reset by switching off and then switching on the supply voltage to the device.
UNIVERSAL TRANSMITTER
SCU-1400

• Input for RTD, TC, Ohm, potentiometer, mA and V
• 2-wire supply > 16 V
• FM-approved for installation in Div. 2
• Output for current and voltage
• Universal AC or DC supply

Advanced features
• Programmable by way of detachable display front (SCU-PDM1), process calibration, signal simulation, password protection, error diagnostics and help text available in several languages.

Application
• Linearised, electronic temperature measurement with RTD or TC sensor.
• Conversion of linear resistance variation to a standard analog current / voltage signal, i.e. from solenoids and butterfly valves or linear movements with attached potentiometer.
• Power supply and signal isolator for 2-wire transmitters.
• Process control with standard analogue output.
• Galvanic separation of analogue signals and measurement of floating signals.
• The SCU-1400 is designed according to strict safety requirements and is thus suitable for application in SIL 2 installations.

Technical characteristics
• When SCU-1400 is used in combination with the SCU-PDM1 display / programming front, all operational parameters can be modified to suit any application. As the SCU-1400 is designed with electronic hardware switches, it is not necessary to open the device for setting of DIP-switches.
• A green / red front LED indicates normal operation and malfunction.
• Continuous check of vital stored data for safety reasons.
• 3-port 2.3 kVAC galvanic isolation.
**SCU-PDM1 DISPLAY / PROGRAMMING FRONT**

**Functionality**
The simple and easily understandable menu structure and the explanatory help texts guide you effortlessly and automatically through the configuration steps, thus making the product very easy to use. Functions and configuration options are described in the section “Configuration / operating the function keys”.

**Application**
- Communications interface for modification of operational parameters in SCU-1400.
- Can be moved from one SCU-1400 device to another and download the configuration of the first transmitter to subsequent transmitters.
- Fixed display for readout of process data and status.

**Technical characteristics**
- LCD display with 4 lines; Line 1 (H=5.57 mm) shows input signal, line 2 (H=3.33 mm) shows units, line 3 (H=3.33 mm) shows analogue output or tag no. and line 4 shows communication status.
- Programming access can be blocked by assigning a password. The password is saved in the transmitter in order to ensure a high degree of protection against unauthorized modifications to the configuration.

**Mounting / installation**
- Click SCU-PDM1 onto the front of SCU-1400.
MOUNTING / DEMOUNTING THE SCU-PDM1

1: Insert the taps of SCU-PDM1 into the holes at the top of the device.
2: Swing SCU-PDM1 into place.

Demounting of SCU-PDM1
3: Push the release button on the bottom of SCU-PDM1 and swing SCU-PDM1 up.
Note: Can be installed or removed whether the signal conditioner is powered or not.
APPLICATIONS

Input signals:

Current  | Voltage  | Potentiometer  | RTD and lin. R  | TC

Output signals:

*Order separately: SCU-CJC1 Optional External CJC connector. See the connection drawing on page 15.

Supply:

21.6...253 VAC
or
19.2...300 VDC

SCU-1400
Part Numbers

SCU-1400 = Universal transmitter
SCU-PDM1 = Display / programming display module
SCU-CJC1 = Optional External CJC connector

Electrical specifications

Environmental conditions
Specifications range ........................................... -20°C...60°C (-4°F...140°F)
Calibration temperature ........................................ 20...28°C (68°F...82.4°F)
Relative humidity ............................................. < 95% RH (non-cond.)
Protection degree ............................................. IP20

Mechanical specifications
Dimensions (HxWxD) ........................................... 109 x 23.5 x 104 mm
(4.3 x 0.9 x 4.1 in)
Dimensions, with SCU-PDM1 (HxWxD) .................... 109 x 23.5 x 116 / 131 mm
(4.3 x 0.9 x 4.6 / 5.2 in)
Weight ............................................................... 145 g
Weight with SCU-PDM1 ....................................... 160 g / 245 g
Max. wire size .................................................. 1 x 2.5 mm² (14 AWG) stranded wire
Screw terminal torque ......................................... 0.5 Nm (0.37 ft lb)
Vibration ......................................................... IEC 60068-2-6 : 2007
2...13.2 Hz ..................................................... ±1 mm
13.2...100 Hz .................................................... ±0.7 g

Common specifications
Supply voltage, universal .................................... 21.6...253 VAC, 50...60 Hz or
19.2...300 VDC
Max. consumption .............................................. ≤ 2.0 W
Fuse ................................................................. 400 mA SB / 250 VAC
Isolation voltage, test / operation ................................ 2.3 kVAC / 250 VAC
Communications interface .................................... Programming front SCU-PDM1
Signal / noise ratio ............................................ Min. 60 dB (0...100 kHz)
Response time (0...90%, 100...10%):
Temperature input ............................................. ≤ 1 s
mA / V input .................................................. ≤ 400 ms

Accuracy, the greater of the general and basic values:

<table>
<thead>
<tr>
<th>Input type</th>
<th>Absolute accuracy</th>
<th>Temperature coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>≤ ±0.1% of span</td>
<td>≤ ±0.01% of span / °C</td>
</tr>
</tbody>
</table>
### Basic values

<table>
<thead>
<tr>
<th>Input type</th>
<th>Basic accuracy</th>
<th>Temperature coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA</td>
<td>≤ ±4 µA</td>
<td>≤ ±0.4 µA / °C</td>
</tr>
<tr>
<td>Volt</td>
<td>≤ ±20 µV</td>
<td>≤ ±2 µV / °C</td>
</tr>
<tr>
<td>Pt100</td>
<td>≤ ±0.2°C</td>
<td>≤ ±0.01°C / °C</td>
</tr>
<tr>
<td>Linear resistance</td>
<td>≤ ±0.1 Ω</td>
<td>≤ ±0.01 Ω / °C</td>
</tr>
<tr>
<td>Potentiometer</td>
<td>≤ ±0.1 Ω</td>
<td>≤ ±0.01 Ω / °C</td>
</tr>
<tr>
<td>TC type: E, J, K, L, N, T, U</td>
<td>≤ ±1°C</td>
<td>≤ ±0.05°C / °C</td>
</tr>
<tr>
<td>TC type: R, S, W3, W5, LR</td>
<td>≤ ±2°C</td>
<td>≤ ±0.2°C / °C</td>
</tr>
<tr>
<td>TC type: B 85...200°C</td>
<td>≤ ±4°C</td>
<td>≤ ±0.4°C / °C</td>
</tr>
<tr>
<td>TC type: B 200...1820°C</td>
<td>≤ ±2°C</td>
<td>≤ ±0.2°C / °C</td>
</tr>
</tbody>
</table>

EMC immunity influence: < ±0.5% of span
Extended EMC immunity:
NAMUR NE 21, A criterion, burst: < ±1% of span

### Auxiliary supplies:
2-wire supply (terminal 44...43): 25...16 VDC / 0...20 mA

**RTD, linear resistance and potentiometer input**

Input for RTD types:
- Pt10, Pt20, Pt50, Pt100, Pt200, Pt250, Pt300, Pt400, Pt500, Pt1000
- Ni50, Ni100, Ni120, Ni1000, Cu10, Cu20, Cu50, Cu100

<table>
<thead>
<tr>
<th>Input type</th>
<th>Min. value</th>
<th>Max. value</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt10...Pt1000</td>
<td>-200°C</td>
<td>+850°C</td>
<td>IEC 60751</td>
</tr>
<tr>
<td>Ni50...Ni1000</td>
<td>-60°C</td>
<td>+250°C</td>
<td>DIN 43760</td>
</tr>
<tr>
<td>Cu10...Cu100</td>
<td>-200°C</td>
<td>+260°C</td>
<td>α = 0.00427</td>
</tr>
<tr>
<td>Lin. R</td>
<td>0 Ω</td>
<td>10000 Ω</td>
<td>-</td>
</tr>
<tr>
<td>Potentiometer</td>
<td>10 Ω</td>
<td>100 kΩ</td>
<td>-</td>
</tr>
</tbody>
</table>

Cable resistance per wire (max.), RTD: 50 Ω
Sensor current, RTD: Nom. 0.2 mA
Effect of sensor cable resistance:
(3- / 4-wire), RTD: < 0.002 Ω / Ω
Sensor error detection, RTD: Yes
Short circuit detection, RTD: < 15 Ω
TC input

<table>
<thead>
<tr>
<th>Type</th>
<th>Min. value</th>
<th>Max. value</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0°C</td>
<td>+1820°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>E</td>
<td>-100°C</td>
<td>+1000°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>J</td>
<td>-100°C</td>
<td>+1200°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>K</td>
<td>-180°C</td>
<td>+1372°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>L</td>
<td>-200°C</td>
<td>+900°C</td>
<td>DIN 43710</td>
</tr>
<tr>
<td>N</td>
<td>-180°C</td>
<td>+1300°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>R</td>
<td>-50°C</td>
<td>+1760°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>S</td>
<td>-50°C</td>
<td>+1760°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>T</td>
<td>-200°C</td>
<td>+400°C</td>
<td>IEC 60584-1</td>
</tr>
<tr>
<td>U</td>
<td>-200°C</td>
<td>+600°C</td>
<td>DIN 43710</td>
</tr>
<tr>
<td>W3</td>
<td>0°C</td>
<td>+2300°C</td>
<td>ASTM E988-90</td>
</tr>
<tr>
<td>W5</td>
<td>0°C</td>
<td>+2300°C</td>
<td>ASTM E988-90</td>
</tr>
<tr>
<td>LR</td>
<td>-200°C</td>
<td>+800°C</td>
<td>GOST 3044-84</td>
</tr>
</tbody>
</table>

Cold junction compensation (CJC)
via external sensor in connector SCU-CJC1
20...28°C ≤ ±1°C
-20...20°C /
28...70°C ≤±2°C

via internal CJC sensor
±(2.0°C + 0.4°C * Δt)

Δt = internal temperature - ambient temperature

Sensor error detection, all TC types
Yes

Sensor error current:
when detecting
Nom. 2 μA
else
0 μA

Current input

Measurement range
0...20 mA

Programmable measurement ranges
0...20 and 4...20 mA

Input resistance
Nom. 20 Ω + PTC 50 Ω

Sensor error detection:
Loop break 4...20 mA
Yes

Voltage input

Measurement range
0...12 VDC

Programmable measurement ranges
0...1 / 0.2...1 / 0...5 / 1...5 / 0...10 and 2...10 VDC

Input resistance
Nom. 10 MΩ
Current output
Signal range (span) ........................................ 0...20 mA
Programmable signal ranges ....................... 0...20 / 4...20 / 20...0 / 20...4 mA
Load (max.) .............................................. 20 mA / 800 Ω / 16 VDC
Load stability .......................................... ≤ 0.01% of span / 100 Ω
Sensor error detection .................. 0 / 3.5 / 23 mA / none
NAMUR NE 43 Upscale / Downscale ........... 23 mA / 3.5 mA
Output limitation:
   on 4...20 and 20...4 mA signals .......... 3.8...20.5 mA
   on 0...20 and 20...0 mA signals .......... 0...20.5 mA
Current limit ........................................... ≤ 28 mA

Voltage output
Signal range ........................................... 0..10 VDC
Programmable signal ranges .................... 0..1 / 0.2..1 / 0..10 / 0..5 / 1..5 /
   2..10 / 1..0 / 1..0.2 / 5..0 / 5..1 /
   10..0 and 10..2 V
Load (min.) ............................................. 500 kΩ

I.S. approval
FM, applicable in ................................ Class I, Div. 2, Group A, B, C, D
   Class I, Div. 2, Group IIC
   Zone 2
Max. ambient temperature for T5 ............. 60°C

Observed authority requirements
EMC 2004/108/EC .................................. EN 61326-1
LVD 2006/95/EC ...................................... EN 61010-1
FM ......................................................... 3600, 3611, 3810 and ISA 61010-1
UL, Standard for Safety ................. UL 508

of span = of the currently selected measurement range

Display readout on the SCU-PDM1 of sensor error detection and input signal outside range

<table>
<thead>
<tr>
<th>Sensor error check:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device:</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>SCU-1400</td>
</tr>
<tr>
<td>Else:</td>
</tr>
</tbody>
</table>

SCU-1400 13
### Outside range readout (IN.LO, IN.HI):
If the valid range of the A/D converter or the polynomial is exceeded

<table>
<thead>
<tr>
<th>Input</th>
<th>Range</th>
<th>Readout</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT</td>
<td>0...1 V / 0.2...1 V</td>
<td>IN.LO</td>
<td>&lt; -25 mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>&gt; 1.2 V</td>
</tr>
<tr>
<td></td>
<td>0...10 V / 2...10 V</td>
<td>IN.LO</td>
<td>&lt; -25 mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>&gt; 1.2 V</td>
</tr>
<tr>
<td>CURR</td>
<td>0...20 mA / 4...20 mA</td>
<td>IN.LO</td>
<td>&lt; -105 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>&gt; 25.05 mA</td>
</tr>
<tr>
<td>LIN.R</td>
<td>0...800 Ω</td>
<td>IN.LO</td>
<td>&lt; 0 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>&gt; 1075 Ω</td>
</tr>
<tr>
<td></td>
<td>0...10 kΩ</td>
<td>IN.LO</td>
<td>&lt; 0 Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>&lt; 110 Ω</td>
</tr>
<tr>
<td>POTM</td>
<td>-</td>
<td>IN.LO</td>
<td>&lt; -0.5 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>&gt; 100.5 %</td>
</tr>
<tr>
<td>TEMP</td>
<td>TC / RTD</td>
<td>IN.LO</td>
<td>&lt; temperature range -2°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN.HI</td>
<td>&gt; temperature range +2°C</td>
</tr>
</tbody>
</table>

### Sensor error detection limits

<table>
<thead>
<tr>
<th>Input</th>
<th>Range</th>
<th>Readout</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURR</td>
<td>Loop break (4..20 mA)</td>
<td>SE.BR</td>
<td>&lt;= 3.6 mA; &gt;= 21 mA</td>
</tr>
<tr>
<td>POTM</td>
<td>All, SE.BR on all 3-wire</td>
<td>SE.BR</td>
<td>&gt;= ca. 126 kΩ</td>
</tr>
<tr>
<td>LIN.R</td>
<td>0...800 Ω</td>
<td>SE.BR</td>
<td>&gt;= ca. 875 Ω</td>
</tr>
<tr>
<td></td>
<td>0...10 kΩ</td>
<td>SE.BR</td>
<td>&gt;= ca. 11 kΩ</td>
</tr>
<tr>
<td>TEMP</td>
<td>TC</td>
<td>SE.BR</td>
<td>&gt;= ca. 750 kΩ / (1.25 V)</td>
</tr>
<tr>
<td></td>
<td>RTD, 2-, 3-, and 4-wire</td>
<td>SE.BR</td>
<td>&gt;= ca. 15 kΩ</td>
</tr>
<tr>
<td></td>
<td>No SE.SH for Cuxx, Pt10, Pt20 and Pt50</td>
<td>SE.SH</td>
<td>&lt; ca. 15 Ω</td>
</tr>
</tbody>
</table>

### Error indications

<table>
<thead>
<tr>
<th>Error search</th>
<th>Readout</th>
<th>Error cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test of internal CJC sensor</td>
<td>CJ.ER</td>
<td>CJC sensor defect or temperature outside range</td>
</tr>
<tr>
<td>Checksum test of the configuration in FLASH</td>
<td>FL.ER</td>
<td>Error in FLASH</td>
</tr>
<tr>
<td>Check measurement of analogue output current</td>
<td>AO.ER</td>
<td>1) No load on the current output (only S4...20/S20...4 mA)</td>
</tr>
<tr>
<td>Communications test SCU-PDM1 / SCU-1400</td>
<td>NO.CO</td>
<td>Connection error</td>
</tr>
<tr>
<td>Internal communication error</td>
<td>NO.OU</td>
<td>Output controller error</td>
</tr>
<tr>
<td>Check that input signal matches input configuration</td>
<td>IN.ER</td>
<td>1) Error levels on input</td>
</tr>
<tr>
<td>Check that saved configuration in SCU-PDM1 matches device</td>
<td>TY.ER</td>
<td>Configuration is not SCU-1400</td>
</tr>
</tbody>
</table>

1 Error indications in the display flash once per second. The help text explains the error.

1) The error is reset by switching off and then switching on the supply voltage to the device.
CONNECTIONS

Supply:

Inputs

- RTD, 2-wire
- RTD, 3- / 4-wire
- TC, internal
- Resistance, 2-wire
- Resistance, 3- / 4-wire
- CJC sensor
- Potentiometer
- 2-wire transmitter
- Voltage
- *TC, external
- CJC connector
- * Order separately: Optional External CJC connector SCU-CJC1

Outputs

- Current
- Voltage, 1 V
- Voltage, 10 V

SCU-1400
CONFIGURATION / OPERATING THE FUNCTION KEYS

Documentation for routing diagram.

In general:
When configuring the SCU-1400, you will be guided through all parameters and you can choose the settings which fit the application. For each menu there is a scrolling help text which is automatically shown in line 3 on the display.

Configuration is carried out by using the 3 function keys:

1. will increase the numerical value or choose the next parameter
2. will decrease the numerical value or choose the previous parameter
3. will accept the chosen value and proceed to the next menu

When configuration is completed, the display will return to the default state 1.0.

Pressing and holding 3 will return to the previous menu or return to the default state (1.0) without saving the changed values or parameters.

If no key is activated for 1 minute, the display will return to the default state (1.0) without saving the changed values or parameters.

Further explanations:

Password protection: Programming access can be blocked by assigning a password. The password is saved in the transmitter in order to ensure a high degree of protection against unauthorized modifications to the configuration. Default password 2008 allows access to all configuration menus.

Signal and sensor error info via display front SCU-PDM1

Sensor error (see limits in the table) is displayed as SE.BR (sensor break) or SE.SH (sensor short). Signals outside the selected range (not sensor error, see table for limits) are displayed as IN.LO indicating low input signal or IN.HI indicating high input signal. The error indication is displayed in line 3 as text and at the same time the backlight flashes. Line 4 of the display is a status line which displays COM (flashing bullet) indicating correct functioning of SCU-PDM1, and arrow up/down which indicates tendency readout of the input signal.
Signal and sensor error indication without display front
Status of the unit can also be read from the red/green LED in the front of the device.
  Green flashing LED 13 Hz indicates normal operation.
  Green flashing LED 1 Hz indicates sensor error.
  Steady green LED indicates internal error.
  Steady red LED indicates fatal error.

Advanced functions
The unit gives access to a number of advanced functions which can be reached by answering “Yes” to the point “adv.set”.

Display setup: Here you can adjust the brightness contrast and the backlight.
  Setup of TAG number with 6 alphanumerics. Selection of functional readout in line 3 of the display - choose between readout of analog output or TAG number.

Two-point process calibration: The unit can be process-calibrated in 2 points to fit a given input signal. A low input signal (not necessarily 0%) is applied and the actual value is entered via SCU-PDM1. Then a high signal (not necessarily 100%) is applied and the actual value is entered via SCU-PDM1. If you accept to use the calibration, the unit will work according to this new adjustment. If you later reject this menu point or choose another type of input signal the unit will return to factory calibration.

Process simulation function: If you say “yes” to the point “EN.SIM” it is possible to simulate an input signal by means of the arrow keys and thus control the output signal up or down. When you finalise the point with $\infty$, the unit returns to normal mode.

Password: Here you can choose a password between 0000 and 9999 in order to protect the unit against unauthorized modifications to the configuration. The unit is delivered default without password. If you have locked the unit with a password by mistake, you can always open the menu by using the master password 2008.

Language: In the menu “lang.setup” you can choose between 7 different language versions of help texts that will appear in the menu. You can choose between UK, DE, FR, IT, ES, SE and DK.
Auto diagnosis
The unit performs an advanced auto diagnosis of the internal circuits.
The following possible errors may be displayed on the front unit SCU-PDM1:
- CJ.ER - CJC sensor defect or CJC temperature outside range
- FL.ER - Flash error
- AO.ER - No load on the current output (only for S4...20 mA/S20...4 mA)
- NO.CO - Connection error
- IN.ER - Error levels on input
- TY.ER - Configuration in SCU-PDM1 does not match this product type

Selection of units
After choosing the input signal type you can choose the process units which will be displayed in text line 2 (see table). By selection of temperature input the process value is always displayed in Celsius or Fahrenheit. This is selected in the menu point after selection of temperature input.

Safety readback
When the device is delivered with default configuration, the SIL function is disabled. The safety readback function (loop surveillance) can be selected in the menu O.RANGE, thus enabling the device to run in SIL mode. In order to enable the SIL functionality, the menu item S4...20 mA must be selected. Please note, however, that when safety readback is enabled, a sensor error will be indicated as an error on the analogue output signal.

CJC
In the CJC menu you can choose between external CJC connector and internal cold junction compensation. The external CJC connector (SCU-CJC1) must be ordered separately.

Memory
In the memory menu you can save the configuration of the device in the SCU-PDM1, and then move the SCU-PDM1 onto another device of the same type and download the configuration in the new device.
If no key is activated for 1 minute, the display will return to the default state 1.0 without saving configuration changes.

- Increase value / choose next parameter
- Decrease value / choose previous parameter
- Accept the chosen value and proceed to the next menu

Hold ✗ Back to previous menu / return to menu 1.0 without saving

1.0 = Default state
Line 1 shows input signal.
Line 2 shows UNIT.
By pressing ✗ and ✓ simultaneously line 3 alternates between A.Out and TAG.
Line 4 shows communication status.
1.1 = Only if password-protected.
1.2 = Not valid for these input signals: 0...20 mA and voltage.
1.3 = Only if input signal is temperature.

Continued on the page
Routing diagram ADV.SET
2.0 In the submenu simulation (SIM) you must press ✗ to return to the default state 1.0.
[01] Set correct password
[02] Enter advanced setup menu?
[03] Select temperature input
  Select potentiometer input
  Select linear resistance input
  Select current input
  Select voltage input
[04] Select 0.0-1 V input range
  Select 0.2-1 V input range
  Select 0-5 V input range
  Select 1-5 V input range
  Select 0-10 V input range
  Select 2-10 V input range
[05] Select 0-20 mA input range
  Select 4-20 mA input range
[06] Select 2-wire sensor connection
  Select 3-wire sensor connection
  Select 4-wire sensor connection
[07] Set resistance value low
[08] Set resistance value high
[09] Select Celsius as temperature unit
  Select Fahrenheit as temperature unit
[10] Select TC sensor type
  Select Ni sensor type
  Select Pt sensor type
[11] Select display unit
[12] Select decimal point position
[13] Set display range low
[14] Set display range high
[15] Select Pt10 as sensor type
  Select Pt20 as sensor type
  Select Pt50 as sensor type
  Select Pt100 as sensor type
  Select Pt200 as sensor type
  Select Pt250 as sensor type
  Select Pt300 as sensor type
  Select Pt400 as sensor type
  Select Pt500 as sensor type
  Select Pt1000 as sensor type
[16] Select Ni50 as sensor type
  Select Ni100 as sensor type
  Select Ni120 as sensor type
  Select Ni1000 as sensor type
[17] Select Cu sensor type
  Select Cu20 as sensor type
  Select Cu50 as sensor type
  Select Cu100 as sensor type
[18] Select TC-B as sensor type
  Select TC-E as sensor type
  Select TC-J as sensor type
  Select TC-K as sensor type
  Select TC-L as sensor type
  Select TC-N as sensor type
  Select TC-R as sensor type
  Select TC-S as sensor type
  Select TC-T as sensor type
  Select TC-U as sensor type
  Select TC-W3 as sensor type
  Select TC-W5 as sensor type
[19] Select TC-Lr as sensor type
[20] Select current as analogue output type
  Select voltage as analogue output type
[37] Select 0-20 mA output range
  Select 4-20 mA output range
  Select S4-20 mA with safety readback
  Select 20-0 mA output range
  Select 20-4 mA output range
  Select S20-4 mA with safety readback
[38] Select no error action - output undefined at error
  Select downscale at error
  Select NAMUR NE43 downscale at error
  Select NAMUR NE43 upscale at error
[39] Select 0.0-1 V output range
  Select 0.2-1 V output range
  Select 0-5 V output range
  Select 1-5 V output range
  Select 0-10 V output range
  Select 2-10 V output range
[40] Select 0-20 mA output range
  Select 4-20 mA output range
  Select S4-20 mA with safety readback
  Select 20-0 mA output range
  Select 20-4 mA output range
  Select S20-4 mA with safety readback
[41] Select 0.0-1 V output range
  Select 0.2-1 V output range
  Select 0-5 V output range
  Select 1-5 V output range
  Select 0-10 V output range
  Select 2-10 V output range
[42] Select 0-20 mA output range
  Select 4-20 mA output range
  Select S4-20 mA with safety readback
  Select 20-0 mA output range
  Select 20-4 mA output range
  Select S20-4 mA with safety readback
[43] Enter password setup
  Enter simulation mode
  Perform process calibration
  Enter display setup
  Perform memory operations
[44] Load saved configuration into SCU-1400
  Save SCU-1400 configuration in SCU-PDM1
[45] Adjust LCD contrast
[46] Adjust LCD backlight
[47] Write a 6-character device TAG
[48] Analogue output value is shown in display line 3
  Device TAG is shown in display line 3
[49] Calibrate input low to process value?
[50] Calibrate input high to process value?
[51] Enable simulation mode?
[52] Set the input simulation value
[53] Enable password protection?
[54] Set new password
[55] Select language
[56] Use process calibration values?
[57] Set value for low calibration point
[58] Set value for high calibration point
[59] Select TC-B connector (accessory)
  Select internal temperature sensor