D2–RMSM Setup Programming and Troubleshooting

In This Chapter. . .

- Getting Started with the Programming
- Writing the Remote I/O Setup
- Example Program Using Discrete Modules
- Example Program Using Analog Modules
- Changing Configurations
- Shared Memory Table for D2-RMSM
- Troubleshooting Remote I/O
- Special CPU Memory for Diagnostics
- D2-RMSM Memory for Diagnostics
- How to Access Diagnostic Information

Getting Started with the Programming

You can write your program using either a handheld programmer or a PC loaded with software such as *Direct*SOFT. The examples that follow will show you how to do it using *Direct*SOFT.

To get started, enter **Direct**SOFT and carry out the normal **Direct**SOFT setup procedures for communicating with your DL205 CPU. If you do not know how to do this, refer to your **Direct**SOFT Manual. Your DL205 User's Manual has a very good coverage of the basic commands available and examples of using the commands to write general ladder logic. We will be showing you in this chapter only those commands that pertain to setting up your remote I/O initialization and its successful utilization.

First open *Direct*SOFT from Windows and establish a link with your CPU. Then enter the Edit Mode for programming. You should now be looking at a screen similar to the one shown below:

The *Direct*SOFT window shown above depicts a program that has already been written. Your window, of course, will be empty when you first enter it. The pages that follow will show you how to write each part of your initialization program.

Writing the Remote I/O Setup

Step 1: Decide How You Are Going to Call Your Program

Is your setup logic going to be in the main program body or is it going to be in a subroutine?

A subroutine for your remote I/O setup has an advantage over writing the code into the program's main body. Some remote I/O setup logic becomes quite lengthy. By putting the setup in a subroutine, you don't have to scroll through extra logic during routine troubleshooting procedures. We advise you to use a subroutine for your remote I/O initialization. Here's how:

Using the GTS Command for the Setup Logic

Step 2: Write the Setup Logic for Each Channel Whether you choose to write the remote I/O setup program as a subroutine or as a part of the main program, the procedure is still the same. You have several things you must do for each channel of remote I/O:

- Tell the remote master to initiate setup, and define the auto return to network option.
- Tell the remote master the starting V-memory address for inputs and outputs, and the total number of each for the channel. You do this with address *pointers* and constant data.
- Tell the remote master how many input and output points are located in each base.
- Tell the remote master to save the parameters in EEPROM (setup is complete).

To write the setup logic, we use the CPU instructions described below. If you are not familiar with these instructions, you may want to refer to the DL205 User Manual for more details and examples.

The Load instruction is a 16-bit instruction that loads the value (Aaaa), which is either a V-memory location or a 4-digit constant, into the lower 16 bits of the accumulator. The upper 16 bits of the accumulator are set to 0.

The Load Address instruction is a 16 bit instruction. It converts any octal value or address to the HEX equivalent value and loads the HEX value into the accumulator.

The OUT instruction is a 16 bit instruction that copies the values in the lower 16 bits of the accumulator to a specified V-memory location (Aaaa).

The WT instruction writes a block of data (1–128 bytes max.) to an intelligent I/O module from a block of V-memory in the CPU. The function parameters (module base/slot address, number of bytes, and the intelligent I/O module memory address) are loaded into the first and second level of the accumulator stack, and the accumulator by three additional instructions. In the WT instruction, Aaaa specifies the starting V-memory address where the data will be written from in the CPU.

LDA
O aaa

You use these instructions to set up the configuration data in a block of V-memory which serves as a buffer. Use WT instructions to store the data to various shared memory locations in the Remote Master module. Use your worksheets to assist you in creating the setup logic.

Example Program Using Discrete I/O Modules

Example 1: To illustrate the setup program for a system using X's as remote inputs and Y's as remote outputs, we will use the example system from Chapter 2, shown here with a completed Channel Configuration Worksheet.

The first block of logic tells the remote master to initiate the setup, and to enable the Auto Return to Network option. To find the D2–RMSM shared memory addresses used in the setup program, refer to the Shared Memory Table at the end of this chapter.

Write Configuration Byte

This block of logic tells the remote master the starting V-memory addresses for the inputs and outputs, and the total number of each for the channel. Use the LD, LDA, and OUT commands to load the starting addresses and point totals into temporary memory, then write the values to the master's shared memory. The Quick Reference Table shows the correct shared memory addresses in octal.

N/A

N/A

N/A

N/A

N/A

N/A

N/A

1

2

3

4

5

6

7

N/A

N/A

N/A

N/A

N/A

N/A

N/A

004

010

014

020

024

030

034

006

012

016

022

026

032

036

This block of logic tells the remote master how many input and output points are located in each base. Each group of four instructions loads the I/O ranges for a slave into temporary memory, the values for which are retrieved from the Remote Slave Worksheets. The WT instruction stores the entire buffer area to the master's shared memory. The Quick Reference Table shows the correct shared memory addresses in octal.

Write Input and Output Ranges for each Slave

each Slave	Channel Configuration Worksheet D2-RMSM Remote Master Module Master Slot Address <u>4</u> (1-7) Protocol Selected <u>RM-NET</u> (RM-NET or SM-NET)					
SPO	Circle one selection for each parameter (selections for each protocol are shown)					
K32 Slave T Input points	Configuration Parameter RM–NET SM–NET					
V-memory buffer	Baud Rate (in KBaud), determined by required 19.2 (38.4) 19.2 38.4 153.6 distance to last slave					
LD K48 Slave 1 Output points	Auto Return to Network (either protocol) YES NO YES NO					
OUT V2004 V−memory buffer	Starting nput V Memory Address: V 40402 Starting Output V Memory Address: V 40502 Total Inputs					
LD K16 Slave 2 Input points	Slave Slave Slave Slave Slave No. of Inputs No. of Outputs Station No. of Inputs No. of Outputs					
V-memory buffer	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
K32 Slave 2 Output points	2 16 32 18 3 48 32 19					
V2006 V–memory buffer	4 20 5 21					
SP0						
V2007 V–memory buffer	1 23 8 24					
LD 32 Slave 3 Output points	9 25 10 26					
V-memory buffer	11 27 12 28					
LD K04 Master module address	13 29 14 30					
LD K12 Number of bytes	15 31					
LDA 004 Stared Memory address	Quick Reference Table					
Write Master memory	Of Shared Memory Addresses					
	Configuration Byte 176					
The last four instructions write the slaves' range data to the Master's shared memory.	Setup Complete Byte 177					
Address 004 is the <i>start</i> of the slave data; the byte length of 12 writes 6 consecutive words of data.	Slave Input Address Address Input Pts Output Pts					

С	176								
Se	177								
Slave	Input Address	Number of Input Pts	Number of Output Pts						
ALL	000	002	124	126					
1	N/A	N/A	004	006					
2	N/A	N/A	010	012					
3	N/A	N/A	014	016					
4	N/A	N/A	020	022					
5	N/A	N/A	024	026					
6	N/A	N/A	030	032					
7	N/A	N/A	034	036					

Write Setup Complete (store channel parameters to EEPROM)

We can now complete the setup program. This last block of logic tells the remote master to save the parameters in EEPROM (setup is complete). The setup complete logic structure is the same for any channel using a D2–RMSM as a master.

The completed setup program for this example is shown on the next page.

RLL Program SP0 SP0 K1 Go to remote number of input points GTS) ┥┝ K16 I/O subroutine Set up 2nd Main Program Body Store in temporary memory V2005 **Remote Input** -(END) from bottom of previous column LD number of output points and Output K32 SBR K1 Remote I/O Subroutine Ranges OUT Store in temporary memory V2006 SP0 first scan relay LD number of input points ++K48 SP0 LD Bits 0,1,2=7 initiates setup Set up 3rd OUT ┥┝ Store in temporary memory K87 Bit 7=1 sets Auto Return to Network V2007 **Initiate Setup Remote Input** OUT LD Store in temporary memory V2000 number of output points and Output K32 Store to LD Ranges Rack/Slot Address of Master OUT _K4 V2010 Shared SP0 LD Number of bytes to write I D Memory K1 ++______K4 LDA 0176 Address From Table below LD Store to K12 WT Shared LDA Write Address Config. data V2000 04 SP0 Memory LD total number of input points WT -| |-K96 V2003 SP0 OUT Set up Channel Store in temporary memory LD V2011 4 4 <u>KC</u>1 Input and Out-LD Set up Comtotal number of output points OUT K112 put Ranges V2013 plete Code OUT LD K4 Store in temporary memory V2012 LD LD K1 Rack/Slot Address of Master K4 Store to Store to LD Number of bytes to write Shared <u>01</u>77 K4 Shared Memory LDA WT Memory Address From Table Below 0124 V2013 WT Write total range data V2011 -(RT) SP0 I DA Starting input address (X040) + +<u>04040</u>2 OUT Set up Input Store in temporary memory V2001 K12 for 3 slaves ... and Output Starting output address (Y040) 040502 **Pointers** OUT Store in temporary memory V2002 LD K4 Rack/Slot Address of Master Store to Number of bytes to write K4 Shared LDA O0 Address From Table Below Memory WT Write input and output pointers V2001 SP0 LD number of input points ++K32 Set up 1st OUT Store in temporary memory V2003 **Remote Input** LD number of output points and Output K48 OUT Ranges Store in temporary memory V2004 to top of next column

Completed Setup Program for X and Y Addressing

Note: Use K4 for 1 slave, K8 for 2 slaves

Quick Reference Table of Shared Memory Addresses

D2–RMSM									
S	Setup Initiation Byte 176								
Se	177								
Slave	Input Address	Number of Input Pts	Number of Output Pts						
ALL	ALL 000 002		124	126					
1	N/A	N/A N/A 004		006					
2	N/A	N/A N/A 010		012					
3	N/A	N/A N/A 014		016					
4	N/A	N/A N/A 020		022					
5	N/A	N/A	024	026					
6	N/A	N/A	030	032					
7	N/A	N/A	034	036					

Example Program Using Analog I/O Modules

Example 2: Addressing using V–Memory The following example uses Terminator I/O discrete and analog I/O modules. It is recommended to use V memory addressing when using analog modules since each analog I/O channel uses a double (two) word each. Thus, an 8 channel analog I/O module uses 256 discrete points and a 16 channel analog I/O module uses 512 discrete points. Analog output modules are configured using the Module Control Byte located in the most significant byte of the most significant word of channel 1 of the module. V memory addressing requires the use of "Bit-of-Word" (DL250 only) instructions to address the I/O points.

The first block of logic tells the remote master to initiate the setup, and to enable the Auto Return to Network option. To find the D2–RMSM shared memory addresses used in the setup program, refer to the Shared Memory Table at the end of this chapter.

Write Configuration Byte

Use Bit-of-Word instructions to address the I/O points when mapping the remote I/O to V memory.

SP0

			CI	nannel Co D2-RMSM	onfi _{Remo}	gur ote M	ation Sh aster Modu	neet le	
	Master Slot Address4_ (1–7)_ Protocol Selected RM-NET (RM-NET or SM-NET)								
	Ci	rcle one se	election for each	ch parameter (s	electic	ns for	each protoco	are shown)	•===)
	0	Configurat	ion Paramete	er /		F	RM-NET	SM-NET	
	Ba di	aud Rate (i stance to la	n KBaud), det ast slave	ermined by req	uired	19.	.2 (38.4)	19.2 38.4 15 307.2 614.4	53.6
ľ	0	perator Inte	erface				N/A	YES NO	
ľ	Αι	uto Return	to Network (ei	ther protocol)			YES	NO	
St	art To	ting Input V	V Memory Ad	ldress: V <u>3000</u>	_ Sta	rting stal N	Output V Mer	nory Address: V <u>\</u> §28	/3100
		Slave		-	Slav		0. Outputs		
		Station	No. Inputs	No. Outputs	Stat	ion	No. Inputs	No, Outputs	
		/ 0	N/A	N/A	16	;			
		1	272	528	17	,			
/	/	2			18				
/		3			19)			
/		4			20)			
		5			21				
		6			22	2			
		7			23				
		8			24				
		9			20) :			
		10			20	,			
		12			27			ł – – – – – – – – – – – – – – – – – – –	
		12			20	,			
		14			30)			
		15			31			1 /1	
					_				
-[LD	⁰ K87	Bits 0,1 Bit 7 de	,2 ON initiat fines Auto F	es th Retur	e se n to	tup Network (0	DN=Yes)	
ŕ	00	⁷⁷ V2000		e a word of a	vaila	ble	V memory	to use as a bu	ffer
		[°] K04	Master	address: Hi	gh by	/te is	s rack (0), I	ow byte is slot	(4)
	LC	, K1	Numbe	r of bytes to	write	to s	shared mer	nory (1 byte)	
-[LC	^{DA} O176	Shared	memory ad	dress	s of c	configuratio	on byte	
_	W	^T V2000	Write va	alue in lowe	r byte	e of ∖	/2000 to N	laster memory	

This block of logic tells the remote master the starting V-memory addresses for the inputs and outputs, and the total number of each for the channel. Use the LD, LDA, and OUT commands to load the starting addresses and point totals into temporary memory, then write the values to the master's shared memory. The Quick Reference Table shows the correct shared memory addresses in octal.

4

5

6

7

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

020

024

030

034

022

026

032

036

This block of logic tells the remote master how many input and output points are located in each base. Each group of four instructions loads the I/O ranges for a slave into temporary memory, the values for which are retrieved from the Remote Slave Worksheets. The WT instruction stores the entire buffer area to the master's shared memory. The Quick Reference Table shows the correct shared memory addresses in octal.

Write Input and Output Ranges for each Slave

each Slave	D2–RMSM Remote Master Module Master Slot Address <u>4</u> (1–7)_ Protocol Selected <u>RM–NET</u> (RM–NET or SM–NET)
SPO LD K272 Slave I input points	Circle one selection for each parameter (selections for each protocol are shown)
OUT V2003 V-memory buffer	Baud Rate (in KBaud), determined by required 19.2 (38.4) 19.2 (38.4) 19.2 (38.4) Operator Interface N/A YES NO
□ □ K528 Slave 1 Output points □ □ □ V-memory buffer	Auto Return to Network (either protocol) YES NO YES NO Starting nput V Memory Address: V 3000 Starting Output V Memory Address: V 3100 Total Inputs 272 Total Outputs 528
	Slave Station No. of Inputs No. of Outputs Slave Station No. of Inputs No. of Outputs 0 N/A N/A 16 1 272 528 17 2 18 19 19 19 19 19 4 20 20 10 10
SP0 LD K04 Master module address LD K4 Number of bytes LDA O04 Shared Memory address WT V2003 Write Master memory	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

The last four instructions write the slaves' range data to the Master's shared memory. Address 004 is the *start* of the slave data; the byte length of 4 writes 2 consecutive words of data.

Quick Reference Table of Shared Memory Addresses

Channel Configuration Worksheet

D2-RMSM								
Configuration Byte 176								
Se	177							
Slave	Input Address	Output Address	Number of Input Pts	Number of Output Pts				
ALL	LL 000 002		124	126				
1	N/A	N/A	004	006				
2	N/A	N/A	010	012				
3	N/A	N/A	014	016				
4	N/A	N/A	020	022				
5	N/A	N/A	024	026				
6	N/A	N/A	030	032				
7	N/A	N/A	034	036				

Write Setup Complete (store channel parameters to EEPROM)

We can now complete the setup program. This last block of logic tells the remote master to save the parameters in EEPROM (setup is complete). The setup complete logic structure is the same for any channel using a D2–RMSM as a master.

The completed setup program for this example is shown on the next page.

OUT

V2004

Store in temporary memory

Ranges

to top of next column

7

N/A

N/A

034

036

Completed Setup Program for V–Memory Addressing

K2000

ID

Loads analog input channel 1 data into

Completed Setup Program for V–Memory Addressing (con't)

V3000

Main Program Body

The Control Bits of an Analog Output module are located in the most significant byte of the most significant word of the first output channel (channel 1).

Channel 1 Memory Map of 8&16-Channel Analog Output Module (T1F–08DA, T1F–016DA)											
Decimal Bit	07	06	05	04	03	02	01	00	0:		
Octal Bit	07	06	05	04	03	02	01	00	3120		
			Analo	og Valu	e Chan	nel 1			Write Byte 1		
			Analo	og Valu	e Char	nel 1			Write Byte 2		
not used								Write Byte 3			
			Mod	ule Co	ontrol	Byte			Write Byte 4		

Module Control Byte of 8&16-Channel Analog Output Module (T1F–08DA, T1F–16DA)												
Decimal Bit	31	30	29	28	27	26	25	24	D 1001''			
Octal Bit	37	36	35	34	33	32	31	30	Read/white			
Bit 24		Outputs Enable 0 = All outputs OFF 1 = All outputs Enabled							Write			
Bit 25		Unipolar / Bipolar 0 = Unipolar selected 1 = Bipolar selected							Write			
Bit 26		5V / 10V Range 0 = 5V range 1 = 10V range							Write			
0 - 20mA / 420mA Range Bit 27 0 = 0 - 20mA range 1 = 4 - 20mA range 1 = 4 - 20mA range						Write						
Bit 28 – 31			Rese	rved fo	r syster	n use			-			

Changing Configurations

If you have stored a configuration to the D2–RMSM via the setup program and need to change it, follow these guidelines to ensure the module accepts the new configuration:

- Change the constants in the setup program that are affected by the new system configuration. For example, if you add an I/O module to a remote slave unit, you must change the input or output range for that slave, as well as the range total for the channel. If the new range totals do not match the sum of the individual slave ranges, the D2–RMSM *will not* accept the new configuration. It will retain the old configuration, and give you an I/O error.
- 2. If you are removing a slave from the channel, you must change the logic of the setup program to clear that slave's range data in the D2–RMSM shared memory. Otherwise it will still see the old data from the previous configuration. For example, if you remove the third slave from our example system, you would load a constant of zero into the slave's input and output range data, located at buffer memory addresses V2007 and V2010. If removing I/O, remember to reduce the total I/O range values also.
- 3. After you have modified the setup program, cycle CPU power, or transition from the STOP to RUN mode to execute the new setup logic. This is necessary if the setup logic executes on the first CPU scan.
- 4. If you get an error after making the appropriate set up program changes, it may be necessary to clear the shared memory in the remote master module. To clear the shared memory in the master module, you will need to:

1) Remove CPU base power and remove the remote master module from the base.

2) Turn on Dip switch 8 on the master module and return it to the base.

3) Apply power to the CPU base noting that the master module LEDs cycle through and then all come ON.

4) Remove CPU base power and remove the remote master module from the base.

5) Turn off Dip switch 8 on the master module and return it to the base.

6) Apply power to the CPU base and check for proper remote I/O operation.

Shared Memory Table for D2–RMSM Remote Master

OCTAL	FUNCTION	FUNCTION	#
ADDRESS	(Slaves 1–15)	(Slaves 16–31)	Bytes
For memory ad	dresses 000 to 077, the user's setup progran	n must store the correct values into these loc	ations.
000	Starting V–memory address for inputs on the channel (in octal)	Number of input points for Slave 16	2
002	Starting V–memory address for outputs on the channel (in octal)	Number of output points for Slave 16	2
004	Number of input points for Slave 1	Number of input points for Slave 17	2
006	Number of output points for Slave 1	Number of output points for Slave 17	2
010	Number of input points for Slave 2	Number of input points for Slave 18	2
012	Number of output points for Slave 2	Number of output points for Slave 18	2
014	Number of input points for Slave 3	Number of input points for Slave 19	2
016	Number of output points for Slave 3	Number of output points for Slave 19	2
020	Number of input points for Slave 4	Number of input points for Slave 20	2
022	Number of output points for Slave 4	Number of output points for Slave 20	2
024	Number of input points for Slave 5	Number of input points for Slave 21	2
026	Number of output points for Slave 5	Number of output points for Slave 21	2
030	Number of input points for Slave 6	Number of input points for Slave 22	2
032	Number of output points for Slave 6	Number of output points for Slave 22	2
034	Number of input points for Slave 7	Number of input points for Slave 23	2
036	Number of output points for Slave 7	Number of output points for Slave 23	2
040	Number of input points for Slave 8	Number of input points for Slave 24	2
042	Number of output points for Slave 8	Number of output points for Slave 24	2
044	Number of input points for Slave 9	Number of input points for Slave 25	2
046	Number of output points for Slave 9	Number of output points for Slave 25	2
050	Number of input points for Slave 10	Number of input points for Slave 26	2
052	Number of output points for Slave 10	Number of output points for Slave 26	2
054	Number of input points for Slave 11	Number of input points for Slave 27	2
056	Number of output points for Slave 11	Number of output points for Slave 27	2
060	Number of input points for Slave 12	Number of input points for Slave 28	2
062	Number of output points for Slave 12	Number of output points for Slave 28	2
064	Number of input points for Slave 13	Number of input points for Slave 29	2
066	Number of output points for Slave 13	Number of output points for Slave 29	2
070	Number of input points for Slave 14	Number of input points for Slave 30	2
072	Number of output points for Slave 14	Number of output points for Slave 30	2
074	Number of input points for Slave 15	Number of input points for Slave 31	2
076	Number of output points for Slave 15	Number of output points for Slave 31	2

OCTAL ADDRESS	FUNCTION	DETAIL	# Bytes
100 – 121	Reserved		18
122	Status of Rotary Switches on module – Read Only	Data is 00 to 1F hex, representing the ad- dress of the module set by the rotary switches.	1
123	Status of DIP Switches on module – Read Only	Bit status represents the setting of each switch on the module's DIP Switch , which sets configuration parameters. 0=OFF, 1=ON.	1
		Bit 0 SW1 status	
		Bit 1 SW2 status	
		Bit 2 SW3 status	
		Bit 3 SW4 status	
		Bit 4 SW5 status	
		Bit 5 SW6 status	
		Bit 6 SW7 status	
		Bit 7 SW8 status	
124	Number of input points committed to the entire channel	User's setup program stores the correct BCD value to this memory location.	2
126	Number of output points committed to the entire channel	User's setup program stores the correct BCD value to this memory location.	2

OCTAL ADDRESS	FUNCTION		DETA	IL	# Bytes		
130 – 131	Communication stop mode selection (com- munication stops when any specified slave fails)	In com stops u commu cified s each s of the s	In communication stop mode, the master stops updating the entire channel when a communication error occurs with any spe- cified slave station. To select this mode for each slave, turn ON the corresponding bit of the shared memory shown below.				
			Address 130	Address 131			
		Bit 0	Entire channel stops when any slave fails	Slave 16			
		Bit 1	Slave 1	Slave 17			
		Bit 2	Slave 2	Slave 18			
		Bit 3	Slave 3	Slave 19			
		Bit 4	Slave 4	Slave 20			
		Bit 5	Slave 5	Slave 21			
		Bit 6	Slave 6	Slave 22			
		Bit 7	Slave 7	Slave 23			
		Bit 8	Slave 8	Slave 24			
		Bit 9	Slave 9	Slave 25			
		Bit 10	Slave 10	Slave 26			
		Bit 11	Slave 11	Slave 27			
		Bit 12	Slave 12	Slave 28			
		Bit 13	Slave 13	Slave 29			
		Bit 14	Slave 14	Slave 30			
		Bit 15	Slave 15	Slave 31			

OCTAL ADDRESS	FUNCTION	DETAIL	# Bytes
132 – 133	Slave removal mode selection (commu- nication stops to only the slave(s) with a communication error)	In slave removal mode, the master stops updating only the slave(s) with a communication error. It continues updating the I/O for the other slaves on the channel. To select this mode for each slave, turn ON the corresponding bit of the shared memory shown below.	2
		Address 132Address 133Bit 0Not usedSlave 16Bit 1Slave 1Slave 17Bit 2Slave 2Slave 18Bit 3Slave 3Slave 19Bit 4Slave 4Slave 20Bit 5Slave 5Slave 21Bit 6Slave 6Slave 22Bit 7Slave 7Slave 23Bit 8Slave 9Slave 24Bit 9Slave 9Slave 25Bit 10Slave 10Slave 27Bit 12Slave 12Slave 28Bit 13Slave 13Slave 29Bit 14Slave 14Slave 30Bit 15Slave 15Slave 31	
134	Communication hold or resume mode	The program can cause the communications on a channel to stop by setting the first bit in this byte ON. After communication stops, only a mode transition of the CPU (from STOP to RUN) will restart the communications. The bit is not cleared automatically, so if using this mode, the user program should clear this byte on the first scan.	1
135 – 137	Reserved		3
140	Network Error Flags – Read Only	Bit status represents network errors detected by the D2–RMSM. 0=OK, 1=ERRORBit 0Configuration Error (see Address 142 for details)Bit 1Communication Error (see Address 144 for details)Bit 2Diagnostics Error (see Address 150 for details)	2

OCTAL ADDRESS	FUNCTION	DETAIL	# Bytes
142	Configuration Error Code – Read Only	Error code in BCD	1
		20 Total inputs exceeds 512	
		21 Total outputs exceeds 512	
		24 I/O address out of I/O range	
		25 I/O address allocated to bad range	
		29 A slave has more than 512 points	
		70 Discrepancy between current configuration and old one	
		71 A module is in the wrong slot	
		72 Slave configuration is different from old one	
		73 Different slave is there	
143	Station Number of Configuration Error – Read Only	Station number in BCD	1
144	Communication Error Code – Read Only	Error code in BCD	1
		01 slave does not respond	
		02 wrong I/O information	
		03 I/O update error : CRC check error	
145	Station Number of Communication Error Code – Read Only	Station number in BCD	1
146	Communication Error Counter – Read Only	Number of communication errors detected since CPU went into RUN mode, in BCD	2
150	Diagnostics Error Code	Error code in BCD	2
		0201 Terminal block removed	
		0202 module not present	
		0203 Blown fuse	
		0206 Low battery voltage	
		0226 Power capacity exceeded	
152	Reserved		1
153	Station number of Diagnostics error – Read Only	Station number in BCD	1

OCTAL ADDRESS	FUNCTION	DETAIL	# Bytes
154 – 157	Reserved		4
160	Current bus scan time – Read Only	BCD value of current bus scan, in msec	2
162	Bus scan time upper limit	User can store BCD value of bus scan upper limit, in msec. Default is 100 msec.	2
164	Shortest bus scan time – Read Only	BCD value of shortest bus scan detected since CPU went into RUN mode, in msec	2
166	Longest bus scan time – Read Only	BCD value of longest bus scan detected since CPU went into RUN mode, in msec	2
170	Bus scan counter – Read Only	BCD value of number of bus scans de- tected since CPU went into RUN mode	2
172	Overlimit Bus scan counter – Read Only	BCD value of number of bus scans which have exceeded the scan time upper limit	2
174 – 175	Reserved		2
176	Setup Initiation Byte (includes Auto Return to Network)	User's setup program stores the correct bit pattern to this memory location to configure the following modes: Bits 0,1, and 2 must be ON to initiate setup of remote slave addressing	1
		Bit 7 ON=Specifies that offline slaves can return to the network without cycling CPU	
177	Copy Configuration to EEPROM (Setup Complete)	User's setup program stores a BCD value to this location to log the parameters stored by the setup program to the Master's EEPROM.	1
		C1 – Signifies that setup is complete. Hint: This should be the last function of your setup program.	
200 – 374	Reserved		125

OCTAL ADDRESS	FUNCTION	DETAIL	# Bytes
375	Slave Page Selection	User's setup program stores a BCD value to this location to select the page of slave parameters for setup programming: 81 Slaves 1–15	1
		82 Slaves 16–31	
376 – 377	Reserved		2

Quick Reference Table of Shared Memory Addresses

D2–RMSM						
Setup Initiation Byte 176						
Setup Compl	177					
Slave	Input	Output	Number of	Number of		
	Address	Address	Input Points	Output Points		
ALL	000	002	124	126		
1	N/A	N/A	004	006		
2	N/A	N/A	010	012		
3	N/A	N/A	014	016		
4	N/A	N/A	020	022		
5	N/A	N/A	024	026		
6	N/A	N/A	030	032		
7	N/A	N/A	034	036		
8	N/A	N/A	040	042		
9	N/A	N/A	044	046		
10	N/A	N/A	050	052		
11	N/A	N/A	054	056		
12	N/A	N/A	060	062		
13	N/A	N/A	064	066		
14	N/A	N/A	070	072		
15	N/A	N/A	074	076		
2nd page of s	slave range da	ita				
16	N/A	N/A	000	002		
17	N/A	N/A	004	006		
18	N/A	N/A	010	012		
19	N/A	N/A	014	016		
20	N/A	N/A	020	022		
21	N/A	N/A	024	026		
22	N/A	N/A	030	032		
23	N/A	N/A	034	036		
24	N/A	N/A	040	042		
25	N/A	N/A	044	046		
26	N/A	N/A	050	052		
27	N/A	N/A	054	056		
28	N/A	N/A	060	062		
29	N/A	N/A	064	066		
30	N/A	N/A	070	072		
31	N/A	N/A	074	076		

Troubleshooting Remote I/O

Troubleshooting Quick Steps If the remote I/O channel does not seem to be working correctly, check the following items. These items represent the problems found most often.

- 1. 1. Cable and connections. Incorrectly wired cables and loose terminations cause the majority of problems. Verify you've selected the proper cable configuration and check the cable, making sure it is wired correctly. Also check the cable routing to ensure that the installation guidelines in Chapter 2 were followed.
- 1. 2. Incorrect Baud Rate. Make sure you've set all T1K–RSSS units to match the communication parameters set on the master station.
- 1. 3. Incorrect protocol. Make sure you've set all T1K–RSSS units to match the protocol setting on the master station.
- 4. Setup program. Check the setup program for errors such as incorrect pointers or constants, or writing to the wrong module address. Be sure that the total inputs and outputs values match the sum of the individual slave input and output ranges; otherwise, the D2–RMSM *will not* accept the setup data. If program errors were corrected and the remote I/O channel still does not seem to be working correctly, it may be necessary to clear the shared memory in the remote master module. Refer to step 4 in the Changing Configurations section earlier in this chapter.

NOTE: If you need more in-depth troubleshooting, see the chart on the next page. It provides several different indicator patterns that may help identify your exact problem.

Troubleshooting Chart The following chart identifies the indicator status, possible cause, and corrective off on flash action for a variety of commonly found problems.

Master StationSlave StationIndicatorsIndicators		Possible Cause	Corrective Action
RUN RUN is off. DIAG	RUN	 Master PLC power is disconnected. Remote Master is defective. 	 Check the PLC power source. Replace the Remote Master.
RUN RUN is on. DIAG	RUN LINK is on. DIAG	 Switch setting on master or slave station is incorrect. Communications wiring is incorrect. 	 Check the DIP switches on Remote Master and slaves to ensure their baud rate and protocol settings match. Check the communications wiring and termination resistors.
RUN RUN is flashing, flashing, l/O is on. l/O is on.	RUN	 Setup program is not correct. I/O totals do not match values in D2–RMSM shared memory 124 and 126. 	 Check the setup program to ensure pointer values and configuration constants are correct. Check the I/O totals against the sum of the individual slave ranges in the setup program.
RUN LINK is on. DIAG VO	RUN I/O is DIAG flashing I/O LINK	 I/O module failure at slave. Slave module is missing 24VDC power. Slave base pwer budget overloaded. 	 Check the I/O modules in the slave unit for failures.
RUN Lights DIAG blink in DIAG sequence, VO then all LINK lights turn on.	RUN Lights DIAG blink in Vo then all LINK on	1. Module's Diagnostic DIP switch is ON.	 Check the Diagnostic DIP switch on Master or slave to ensure that it is off.
RUN RUN is on. DIAG	RUN I/O is on. DIAG I VO I	1. Rotary switches' setting for slave ID exceeds valid address for chosen protocol.	1. Check rotary switches on slave for valid unit number: must be 31 or less for SM–NET, must be 7 or less for RM–NET

Special CPU Memory for Diagnostics

Communication Status Flags in V-memory This table provides a listing of the individual flags in V-memory for communication status. The corresponding bit of V-memory turns ON when the slave is communicating. Station 0 represents the master; its bit turns on when communication begins with its slaves. You may use *Direct*SOFT or the application program to monitor these flags. If there is a communications error, this memory may not show the correct data.

	Master in Slot No.:							
	0	1	2	3	4	5	6	7
Station	N/A	V7661	V7662	V7663	V7664	V7665	V7666	V7667
0				Bi	t 0			
1				Bi	t 1			
2				Bi	t 2			
3				Bi	t 3			
4				Bi	t 4			
5		Bit 5						
6		Bit 6						
7	Bit 7							
8	Bit 8							
9	Bit 9							
10				Bit	10			
11				Bit	11			
12				Bit	12			
13		Bit 13						
14		Bit 14						
15				Bit	15			

Error Flags in V-memory

This table provides a listing of the individual flags in V–memory for slave errors. The corresponding bit of V-memory turns ON when the slave has an error. Station 0 represents the master; its bit turns on when an error occurs with any slave. You may use *Direct*SOFT or the application program to monitor these flags. If there is a communications error, this memory may not show the correct data.

	Master in Slot No.:							
	0	1	2	3	4	5	6	7
Station	N/A	V7671	V7672	V7673	V7674	V7675	V7676	V7677
0				Bi	t 0			
1				Bi	t 1			
2				Bi	t 2			
3				Bi	t 3			
4				Bi	t 4			
5				Bi	t 5			
6		Bit 6						
7	Bit 7							
8	Bit 8							
9		Bit 9						
10				Bit	10			
11				Bit	11			
12		Bit 12						
13	Bit 13							
14	Bit 14							
15		Bit 15						

D2–RMSM Memory for Diagnostics

Status and error information about the D2–RMSM Remote Master module and its attached remote I/O network are available in the Remote Master shared memory described earlier in this chapter.

- **Hardware Status** Octal address status bytes 122 123 available in the D2–RMSM shared memory report the hardware settings. You can implement logic to read these bytes to check your configuration without having to remove the module.
- **Bus Scan Status** Octal address status bytes 160–172 available in the D2–RMSM shared memory provide information on bus performance. You can implement logic to read these bytes to check your configuration without having to remove the module.
- **Network Errors** Octal address status bytes 140 146 available in the D2–RMSM shared memory provide information on network errors and their location. You can implement logic to read these bytes to check your configuration without having to remove the module.

The next section provides specific examples on how to read status data from the Master module.

How to Access Diagnostics Information

To access diagnostics information, we exchange data with the D2–RMSM module. The remote master unit is an intelligent module, which means it operates asyncronously from the CPU, and it has its own memory. We use the CPU instructions described below to communicate with an intelligent module.

The WT instruction writes a block of data (1–128 bytes max.) to an intelligent I/O module from a block of V-memory in the CPU. The function parameters (module base/slot address, number of bytes, and the intelligent I/O module memory address) are loaded into the first and second level of the accumulator stack, and the accumulator by three additional instructions. In the WT instruction, Aaaa specifies the starting V-memory address where the data will be written from in the CPU. Listed below are the steps to program the WT instruction:

	– ^{LD} K04	Load the base number (0) into the first byte and the slot number (1–7) into the second byte of the second level of the accumulator stack.
_	– ^{LD} K2	Load the number of bytes to be transferred into the first level of the accumulator stack.
	D162	Load the intelligent module address which will receive the data into the accumulator. We use the LDA to convert the octal address into its HEX equivalent.
	WT V2015	Insert the WT instruction, which specifies the starting V-memory location where the data will be written from in the CPU.

The RD instruction reads a block of data (1–128 bytes max.) from an intelligent I/O module into the CPU's V–memory. The function parameters (module base/slot address, number of bytes, and the intelligent I/O module memory address) are loaded into the first and second level of the accumulator stack, and the accumulator by three additional instructions. In the RD instruction, Aaaa specifies the starting V–memory address where the intelligent module stores the data in the CPU. Listed below are the steps to program the RD instruction:

Example 1: The diagnostic error information can assist you in locating errors on a remote I/O Reading Diagnostic network, either during installation or for a previously operating system. During installation, we might expect configuration errors caused by incorrect switch settings or an invalid setup program. For a previously operating system, the diagnostics can help locate such faults as a slave not responding, an I/O module not present, or a loose terminal block.

In this example, we read the network error flags each scan, and if there is a configuration error present, we read the error details.

Example 2: Writing Bus Scan Overlimit and Reading Bus Scan Status In certain applications, the scan time of the remote I/O bus can be an important factor in the response time of the system. Factors which affect the scan time include number of slaves on the bus and the baud rate. Required bus performance may dictate your system layout. For example, you may want to increase the number of remote channels in the system to decrease the number of slaves on each channel. Or you may need to choose SM–NET as the protocol to operate at a higher baud rate.

Bus scan performance data includes current bus scan time, the longest and shortest scans detected, a scan counter, and a scan overlimit counter. The overlimit counter records the number of times the scan has exceeded the overlimit value. The overlimit value, in msec, can be set by the user's logic; the default is 100 msec.

In this example, we demonstrate how to set the bus scan overlimit parameter, and then read the bus scan data to check performance.

You can then use the retrieved data in logic or display it in a Dataview in *Direct*SOFT (shown on the next page) to monitor bus performance. The Bus Scan Status Table describes the definitions of the status values.

Bus scan performance data displayed in a Dataview