SELECTING THE SureStep™ STEPPING SYSTEM

Selecting the SureStep [™] Stepping SystemC	-2
The Selection Procedure	:-2
How many pulses from the PLC to make the move?	:-2
What is the positioning resolution of the load? C	:-3
What is the indexing speed to accomplish the move time?	:-3
Calculating the Required Torque C	2–4
Leadscrew – Example CalculationsC	-8
Step 1 – Define the Actuator and Motion Requirements	:-8
Step 2 – Determine the Positioning Resolution of the Load	:-9
Step 3 – Determine the Motion Profile C	:-9
Step 4 – Determine the Required Motor Torque C	:-9
Step 5 – Select & Confirm the Stepping Motor & Driver System	-10
Belt Drive – Example Calculations	15
Step 1 – Define the Actuator and Motion Requirements	-15
Step 2 – Determine the Positioning Resolution of the Load	-16
Step 3 – Determine the Motion Profile C-	-16
Step 4 – Determine the Required Motor Torque	-16
Step 5 – Select & Confirm the Stepping Motor & Driver System	-17
Index Table – Example Calculations	19
Step 1 – Define the Actuator and Motion Requirements	-19
Step 2 – Determine the Positioning Resolution of the Load	-19
Step 3 – Determine the Motion Profile	-20
Step 4 – Determine the Required Motor Torque	-20
Step 5 – Select & Confirm the Stepping Motor & Driver System	-21
Engineering Unit Conversion Tables.	
Formulae & Definitions:	22

APPENDIX

Selecting the SureStep[™] Stepping System

The selection of your SureStep[™] stepping system follows a defined process. Let's go through the process and define some useful relationships and equations. We will use this information to work some typical examples along the way.

The Selection Procedure

The motor provides for the required motion of the load through the actuator (mechanics that are between the motor shaft and the load or workpiece). Key information to accomplish the required motion is:

- total number of pulses from the PLC
- · positioning resolution of the load
- indexing speed (or PLC pulse frequency) to achieve the move time
- required motor torque (including the 100% safety factor)
- load to motor inertia ratio

In the final analysis, we need to achieve the required motion with acceptable positioning accuracy.

How many pulses from the PLC to make the move?

The total number of pulses to make the entire move is expressed with the equation:

Equation $(\mathbf{0}: \mathbf{P}_{total} = total \text{ pulses} = (\mathbf{D}_{total} \div (\mathbf{d}_{load} \div \mathbf{i})) \times \theta_{step}$

D_{total} = total move distance

 d_{load} = lead or distance the load moves per revolution of the actuator's drive shaft (P = pitch = 1/d_load)

θ_{step} = driver step resolution (steps/rev_{motor})

i = gear reduction ratio (rev_{motor}/rev_{gearshaft})

Example 1: The motor is directly attached to a disk, the stepping driver is set at 400 steps per revolution and we need to move the disk 5.5 revolutions. How many pulses does the PLC need to send the driver?

P_{total} = (5.5 rev_{disk} ÷ (1 rev_{disk}/rev_{driveshaft} ÷ 1 rev_{motor}/rev_{driveshaft})) x 400 steps/rev_{motor} = 2200 pulses **Example 2:** The motor is directly attached to a ballscrew where one turn of the ballscrew results in 10 mm of linear motion, the stepping driver is set for 1000 steps per revolution, and we need to move 45 mm. How many pulses do we need to send the driver?

P_{total} = (45 mm ÷ (10 mm/rev_{screw} ÷ 1 rev_{motor}/rev_{screw})) x 1000 steps/rev_{motor} = 4500 pulses

Example 3: Let's add a 2:1 belt reduction between the motor and ballscrew in example 2. Now how many pulses do we need to make the 45 mm move?

P_{total} = (45 mm ÷ (10mm/rev_{screw} ÷ 2 rev_{motor}/rev_{screw})) x 1000 steps/rev_{motor} = 9000 pulses

What is the positioning resolution of the load?

We want to know how far the load will move for one pulse or step of the motor shaft. The equation to determine the positioning resolution is:

Equation **Q**: L_{θ} = load positioning resolution = $(d_{load} \div i) \div \theta_{step}$

Example 4: What is the positioning resolution for the system in example 3?

 $\begin{array}{l} \mathsf{L}_{\theta} = (\mathbf{d}_{\mathsf{load}} \div \mathbf{i}) \div \theta_{\mathsf{step}} \\ = (10 \text{ mm/rev}_{\mathsf{screw}} \div 2 \text{ rev}_{\mathsf{motor}}/\mathsf{rev}_{\mathsf{screw}}) \div 1000 \text{ steps/rev}_{\mathsf{motor}} \\ = 0.005 \text{mm/step} \\ \approx 0.0002 \text{in/step} \end{array}$

What is the indexing speed to accomplish the move time?

The most basic type of motion profile is a "start-stop" profile where there is no acceleration or deceleration period. This type of motion profile is only used for low speed applications because the load is "jerked" from one speed to another and the stepping motor will stall or drop pulses if excessive speed changes are attempted. The equation to find indexing speed for "startstop" motion is:

Equation (3): f_{SS} = indexing speed for start-stop profiles = P_{total} + t_{total}

t_{total} = move time

Example 5: What is the indexing speed to make a "start-stop" move with 10,000 pulses in 800 ms?

 f_{SS} = indexing speed = $P_{total} \div t_{total}$ = 10,000 pulses \div 0.8 seconds = 12,500 Hz

For higher speed operation, the "trapezoidal" motion profile includes controlled acceleration & deceleration and an initial non-zero starting speed. With the acceleration and deceleration periods equally set, the indexing speed can be found using the equation:

Equation (4): $f_{TRAP} = (P_{total} - (f_{start} x t_{ramp})) \div (t_{total} - t_{ramp})$ for trapezoidal motion profiles

f_{start} = starting speed

tramp = acceleration or deceleration time

Example 6: What is the required indexing speed to make a "trapezoidal" move in 800ms, accel/decel time of 200 ms each, 10,000 total pulses, and a starting speed of 40 Hz?

 $\mathbf{f}_{\mathsf{TRAP}}$ = (10,000 pulses - (40 pulses/sec x 0.2 sec)) ÷ (0.8 sec - 0.2 sec) \approx 16,653 Hz

Calculating the Required Torque

The required torque from the stepping system is the sum of acceleration torque and the running torque. The equation for required motor torque is:

Equation (5: T_{motor} = T_{accel} + T_{run} T_{accel} = motor torque required to accelerate and decelerate the total system inertia (including motor inertia)

 \mathbf{T}_{run} = constant motor torque requirement to run the mechanism due to friction, external load forces, etc.

In **Table 1** we show how to calculate torque required to accelerate or decelerate an inertia from one speed to another and the calculation of running torque for common mechanical actuators.

Table 1 (cont'd)				
Typical Leadscrew Data				
Material: e = efficiency		Material:	μ= coef. of friction	
ball nut	0.90	steel on steel	0.580	
acme with plastic nut	0.65	steel on steel (lubricated)	0.150	
acme with metal nut	0.40	teflon on steel	0.040	
		ball bushing	0.003	
	Belt Drive (or	Rack & Pinion) Equations		
Jmotor J _{gear} J _{motor} J _{gear} J _{motor} J _{gear} J _{gea}				
Description:		Equations:		
Motor RPM		n _{motor} = (v _{load} x 2 π r) x i		
Torque required to accelerate and decelerate the load		T_{accel} ' $J_{total} \times (\Delta speed \div \Delta time) \times 0.1$		
Inertia of the load		$J_{total} = J_{motor} + J_{gear} + ((J_{pinion} + J_W))$	÷ i ²)	
Inertia of the load		$J_{W} = (W \div (g \ge e)) \ge r^{2}$; $J_{W} = ((W_{1} + e)) \ge r^{2}$	+ W ₂) ÷ (g x e)) x r ²	
Radius of pulleys		r = radius of pinion or pulleys (incl	h)	
Running torque		T _{run} = (F _{total} x r) ÷ i		
Force total		$F_{total} = F_{ext} + F_{friction} + F_{gravity}$		
Force of gravity and Force	of friction	$F_{gravity} = Wsin\theta; F_{friction} = \mu Wcos\theta$		
	Belt (or Ge	ar) Reducer Equations		
	J _{motorpulley}	Jmotorpulley		
J _{motor} J _{loadpulley} J _{Load} J _{motor} J _{loadpulley} J _{Load}				
Description:		Equations:		
Motor RPM		n _{motor} = n _{load} x i		
Torque required to acceler and decelerate the load	rate	T _{accel} ' J _{total} x (∆speed÷∆time) x 0.1		
Inertia of the load		J _{total} = J _{motor} + J _{motorpulley} + ((J _{loadpu}	ulley + J _{Load}) ÷ i ²)	
Motor torque T _{motor} x i = T _{Load}				

Table 1 (cont'd)				
Inertia of Hollow Cylinder Equations				
	\square			
	$D_i = 2r_i$			
Description:	Equations:			
Inertia	$J = (W \times (r_o^2 + r_i^2)) \div (2g)$			
Inertia	$J = (\pi x L x p x (r_o^4 - r_i^4)) \div (2g)$			
Volume	volume = $\pi/4 x (D_0^2 - D_i^2) x L$			
	Inertia of Solid Cylinder Equations			
Description	Fountions			
Inertia	Equations: $I = (M \times \pi^2) + (2\pi)$			
Inortia	$J = (W \times I^{-}) \div (2g)$			
Velume	J = (π X L X p X r') ÷ (2g)			
volume	volume = $\pi \mathbf{x} \mathbf{r}^2 \mathbf{x} \mathbf{L}$			
	Inertia of Rectangular Block Equations			
Description:	Equations:			
Inertia	$J = (W \div 12g) x (h^2 + w^2)$			
Volume	volume = l x h x w			
	Symbol Definitions			
J = inertia	p = density			
L = Length	p = 0.098 lb/in ³ (aluminum)			
h = height	p = 0.28 lb/in ³ (steel)			
w = width	p = 0.04 lb/in ³ (plastic)			
W = weight	p = 0.31 lb/in ³ (brass)			
D = diameter	p = 0.322 lb/in ³ (copper)			
r = radius				
g = gravity = 386 in/sec ²	π ≈ 3.14			

Leadscrew - Example Calculations

Step 1 - Define the Actuator and Motion Requirements

Weight of table and workpiece = 200 lb, where W = 200 lb Angle of inclination = 0° Friction coefficient of sliding surfaces = 0.05, where μ = 0.05 External load force = 0 Ball screw shaft diameter = 0.6 inch Ball screw naterial = steel Ball screw material = steel Ball screw lead = 0.6 inch/rev, where P = 1/0.6 = 1.67 rev/in Desired Resolution = 0.001 inch/step Gear reducer = 2:1, where i = 2, preliminary (for the 3:1 example, i = 3) Stroke = 4.5 inch Move time = 1.7 seconds Acceleration time = Deceleration time = 0.425 sec / 2 = 212.5 ms Lead screw efficiency = 0.9, where e = 0.9 Coupling and gear reducer inertias are negligible, which are considered to be 0

Definitions

 $d_{\rm load}$ = lead or distance the load moves per revolution of the actuator's drive shaft (P = pitch = $1/d_{\rm load})$

D_{total} = total move distance

θ_{step} = driver step resolution (steps/rev_{motor})

i = gear reduction ratio (rev_{motor}/rev_{gearshaft})

T_{accel} = motor torque required to accelerate and decelerate the total system inertia (including motor inertia)

 $T_{\mbox{run}}$ = constant motor torque requirement to run the mechanism due to friction, external load forces, etc.

t_{total} = move time

Start frequency = 20 Hz (as defined with a Module H0-CTRIO

Step 2 - Determine the Positioning Resolution of the Load

One revolution of the lead screw shaft advances 0.6 inches. We are looking for a 0.001 inch per step precision.

Check to see if 400 pulses/rev will achieve the desired precision:

- With a reduction of 2:1, there will be two motor shaft revolutions to get a displacement of 0.6 inches.
- (2 rev) x (400 pulses/rev) = 800 pulses for every 0.6 inches of displacement.
- Therefore, (0.6 in) / (800 pulses) = 0.00075 in/pulse.
- This is within the desired 0.001 in/step.

How many pulses are needed for the displacement?

- With the 2:1 gear reduction, the stepping system can be set at 400 steps/rev to exceed the required load positioning resolution.
- Since the lead screw advances 0.6 inches / rev, in the required stroke of 4.5 inches we will need:

(4.5 in) / (0.6 rev/in) = 7.5 revolutions on the lead screw

• Since we have a reduction of 2:1, the motor shaft shall rotate 15 revolutions.

Step 3 – Determine the Motion Profile

Since we know that 400 pulses gets one revolution on the motor and we need 15 revolutions, then $400 \times 15 = 6,000$ pulses to move 4.5 inches.

From **Equation** (4), the indexing frequency for a trapezoidal move is:

- f_{TRAP} = (P_{total} (f_{start} x t_{ramp})) ÷ (t_{total} t_{ramp}) = (6,000 - (20 x 0.425s)) ÷ (1.7 - 0.425) = 4,699 Hz, where the starting speed is 20 Hz
- (4,699 Hz) / (400 steps/rev) = 11.7475 rev/s
- To get it in rpm, (11.7475 rev/s) x (60 s/min) = 704.85 rpm.

Step 4 - Determine the Required Motor Torque

Using the equations in **Table 1**: (Total inertia seen by the motor is the sum of all inertias)

 $\begin{array}{l} J_{total} = J_{motor} + J_{gear} + ((J_{coupling} + J_{screw} + J_{W}) \div i^{2}) \\ \text{For this example, we assume the gearbox and coupling inertias are zero.} \end{array}$

Load inertia:

 $\begin{aligned} J_{w} &= (W \div (g \times e)) \times (1 \div 2\pi P)^{2} \\ &= (200 \div (386 \times 0.9)) \times (1 \div 2 \times 3.1416 \times 1.67)^{2} \\ &= 0.00523 \ \text{lb} \cdot \text{in} \cdot \text{sec}^{2} \end{aligned}$

Lead screw inertia:

 $J_{screw} = (\pi x L x r x r^4) \div (2g)$ $= (3.1416 \times 23.6 \times 0.28 \times 0.3^4) \div (2 \times 386)$ $= 0.0002178 \text{ lb} \cdot \text{in} \cdot \text{sec}^2$

The inertia of the load and screw reflected to the motor is the sum of both values divided by the square of the reduction ratio

 $\begin{aligned} J_{\text{(screw + load) referred to motor}} &= ((J_{\text{screw}} + J_{\text{W}}) \div i^2) \\ J_{\text{total less the motor inertia}} &= ((0.0002178 + 0.00523) \div 2^2) = 0.001362 \text{ lb} \cdot \text{in} \cdot \text{sec}^2 \end{aligned}$

The dynamic torque required to accelerate the inertia (without the motor rotor inertia) is:

 $\begin{aligned} \mathbf{T}_{accel} &= \mathbf{J}_{total} \times ((\Delta_{rpm} \div \Delta_{time}) \times (2\pi \div 60)) \\ &= 0.001362 \times ((704.85 \div 0.2125) \times (2 \times 3.1416 \div 60)) \\ &= 0.474309 \text{ lb·in} \end{aligned}$

Determine the running torque, or in this case the friction torque:

The forces are:

 $F_{total} = F_{ext} + F_{friction} + F_{gravity}$ [External forces and gravity are zero in this case.] = 0 + ($\mu \times W \times cosu$) + 0 = 0.05 x 200 = 10 Ib

And the formula to be used is:

 $\begin{aligned} \mathbf{T}_{run} &= ((\mathbf{F}_{total} \div (2\pi \mathbf{P})) + \mathbf{T}_{preload}) \div \mathbf{i} \\ &= (10 \div (2 \times 3.1416 \times 1.67)) \div 2 \text{ [related to the motor side]} \\ &= 0.4765 \text{ Ib} \cdot \text{in [where, we have assumed the preload torque to be zero]} \end{aligned}$

From **Equation (5)**, the minimum required motor torque @ 704.85 rpm is:

T_{motor} = T_{accel} + T_{run} = (0.474309 lb·in) + (0.4765 lb·in) = 0.9508 lb·in, or 15.21 oz·in

However, this is the required motor torque before we have picked a motor and included the motor inertia.

Step 5 - Select & Confirm the Stepping Motor & Driver System

There are two commonly used criteria to select a motor and drive:

- Take into account the calcluated torque. From step 4, we find we need 15.21 oz·in.
- Per a rule of thumb, the load to motor inertia ratio should be kept below 10.
- In step 4 we calculated that the J(screw + load) = 0.001362 lb·in·sec². To find the ratio, we use the formula: J(screw + load) + J_{motor} The inertia of the motor is found in the motor specifications sheet.

We will check the criteria with 2 motors:

Figure 2 shows the Torque vs. Speed curves for STP-MTR-17040 and figure 3 shows STP-MTR-17048. We use this as an example to observe how different power supply voltages affect the torque output of a motor.

Consider STP-MTR-17040:

Figure 2: Torque for STP-MTR-17040 at 4.7 kHz

According to the torque/speed curves for this motor, the torque at 4.7 kHz is approximately 39 oz·in at 48VDC and 34 oz·in at 70VDC. Based on the torque, this motor meets the desired 15.21 oz·in with any power supply.

The rotor intertia, per the motor specification is 0.28 oz·in² or 0.0000454 lb·in·sec².

Load/Motor inertia ratio:

J(screw + load) ÷ J_{motor} = 0.001362 lb·in·sec² ÷ 0.0000454 lb·in·sec² = **30**

The ratio of 30 is well above the desired ratio of 10, so the STP-MTR-17040 motor is not suitable.

Figure 3: Torque for STP-MTR-17048 at 4.7 kHz

For the purpose of this example, the torque vs. speed curves for this motor at 4.7 kHz will be approximately 48 oz·in at 48VDC, and 46 oz·in at 70VDC. This motor also meets the desired 15.21 oz·in requirement.

The rotor intertia, per the motor specification is 0.45 oz·in² or 0.000024 lb·in·sec². Load/Motor inertia ratio:

J(screw + load) + J_{motor} = 0.001362 lb·in·sec² + 0.000024 lb·in·sec²

= 18.683

The ratio of 18.683 is still above the desired ratio of 10, so the STP-MTR-17048 motor is not suitable.

We can keep increasing the motor size, or maybe change the reflected load inertia by changing the reduction ratio from 2:1 to 3:1.

Reduction Ratio 3:1 (Step 2 revisited) – Determine the Positioning Resolution of the Load

One revolution of the lead screw shaft advances 0.6 inches. We are looking for a 0.001 inch per step precision.

Check to see if 400 pulses/rev will achieve the desired precision:

• With a reduction of 3:1, there will be three motor shaft revolutions to get a displacement of 0.6 inches.

- (3 rev) x (400 pulses/rev) = 1200 pulses for every 0.6 inches of displacement.
- Therefore, (0.6 in) / (1200 pulses) = 0.0005 in/pulse.
- This is within the desired 0.001 in/step.

How many pulses are needed for the displacement?

- With the 3:1 gear reduction, the stepping system can be set at 400 steps/rev to exceed the required load positioning resolution.
- Since the lead screw advances 0.6 inches / rev, in the required stroke of 4.5 inches we will need:

(4.5 in) / (0.6 rev/in) = 7.5 revolutions on the lead screw

• Since we have a reduction of 3:1, the motor shaft shall rotate 22.5 revolutions.

Reduction Ratio 3:1 (Step 3 revisited) – Determine the Motion Profile

Since we know that 400 pulses gets one revolution on the motor and we need 22.5 revolutions, then $400 \times 22.5 = 9,000$ pulses to move 4.5 inches.

From **Equation** (4), the indexing frequency for a trapezoidal move is:

- **f**_{TRAP} = (**P**_{total} (**f**_{start} x **t**_{ramp})) ÷ (**t**_{total} **t**_{ramp}) = (9,000 - (20 × 0.425s)) ÷ (1.7 - 0.425) = 8,991.5 Hz, where the starting speed is 20Hz
- (8,991.5 Hz) / (400 steps/rev) = 22.48 rev/s
- To get it in rpm, (22.48 rev/s) x (60 s/min) = 1349 rpm.

Reduction Ratio 3:1 (Step 4 revisited) – Determine the Required Motor Torque

Using the equations in **Table 1**:

(Total inertia seen by the motor is the sum of all inertias)

 $J_{total} = J_{motor} + J_{gear} + ((J_{coupling} + J_{screw} + J_{W}) \div i^{2})$

For this example, we assume the gearbox and coupling inertias are zero.

Load inertia:

 $\begin{aligned} J_{w} &= (W \div (g \times e)) \times (1 \div 2\pi P)^{2} \\ &= (200 \div (386 \times 0.9)) \times (1 \div 2 \times 3.1416 \times 1.67)^{2} \\ &= 0.00523 \ \text{lb} \cdot \text{in} \cdot \text{sec}^{2} \end{aligned}$

Lead screw inertia:

$$\begin{aligned} I_{screw} &= (\pi \textbf{ x L x p x r^4}) \div (2g) \\ &= (3.1416 \times 23.6 \times 0.28 \times 0.3^4) \div (2 \times 386) \\ &= 0.0002178 \ \text{lb} \cdot \text{in} \cdot \text{sec}^2 \end{aligned}$$

The inertia of the load and screw reflected to the motor is the sum of both values divided by the square of the reduction ratio

 $J_{(screw + load) referred to motor} = ((J_{screw} + J_W) \div i^2)$

 $J_{\text{total less the motor inertia}} = ((0.0002178 + 0.00523) \div 3^2) = 0.000605 \text{ lb} \cdot \text{in sec}^2$ The dynamic torque required to accelerate the inertia (without the motor rotor inertia) is:

 $\begin{array}{l} \textbf{T}_{accel} = \textbf{J}_{total} \ \textbf{x} \left((\Delta_{rpm} \div \Delta_{time}) \ \textbf{x} \left(2\pi \div 60 \right) \right) \\ = 0.000605 \ \textbf{x} \left((1349 \div 0.2125) \ \textbf{x} \left(2 \ \textbf{x} \ 3.1416 \div 60 \right) \right) \\ = 0.4022 \ lb \cdot in \end{array}$

Determine the running torque, or in this case the friction torque: The forces are:

 $F_{total} = F_{ext} + F_{friction} + F_{gravity}$ [External forces and gravity are zero in this case.] = 0 + ($\mu \times W \times \cos\theta$) + 0

= 0.05 x 200 = 10 Ib

And the formula to be used is:

 $\begin{aligned} \mathbf{T}_{run} &= ((\mathbf{F}_{total} \div (2\pi\mathbf{P})) + \mathbf{T}_{preload}) \div i \\ &= (10 \div (2 \times 3.1416 \times 1.67)) \div 3 \text{ [related to the motor side]} \\ &= 0.3177 \text{ Ib-in [where, we have assumed the preload torque to be zero]} \end{aligned}$ From **Equation (5**, the minimum required motor torque @ 1349 rpm is:

T_{motor} = T_{accel} + T_{run} = (0.4022 lb·in) + (0.3177 lb·in) = 0.7199 Ib·in, or 11.51 oz·in

Consider STP-MTR-17048 with the new values:

STP-MTR-17048 Torque vs Speed (1.8° step motor; 1/2 stepping)

For the purpose of this example, the torque vs. speed curves for this motor at 8.99 kHz will be approximately 26 oz·in at 32VDC and 44 oz·in at 70VDC. Based on the torque, this motor meets the desired 11.51 oz·in requirement.

The rotor intertia, per the motor specification is 0.45 oz·in² or 0.000024 lb·in·sec².

Load/Motor inertia ratio:

 $J_{(screw + load)} \div J_{motor} = 0.00605 \ lb \cdot in \cdot sec^2 \div 0.000024 \ lb \cdot in \cdot sec^2$

The ratio of 2.52 is below the desired ratio of 10, so the STP-MTR-17048 motor is suitable.

A small change in the mechanical design allowed us to use the motor STP-MTR-17048. The torque in the point of operation is more than enough, and the ratio of intertia criteria is fulfilled with any level of voltage in the drive. To be sure the safety factor is high, it would be better to select a 48V power supply and drive.

Belt Drive – Example Calculations

Weight of table and workpiece = 3 lb External force = 0 lb Friction coefficient of sliding surfaces = 0.05 Angle of table = 0° Belt and pulley efficiency = 0.8 Pulley diameter = 1.5 inch Pulley thickness = 0.75 inch Pulley material = aluminum Desired Resolution = 0.001 inch/step Gear Reducer = 5:1 Stroke = 50 inch Move time = 4.0 seconds Accel and decel time = 1.0 seconds

Definitions

 d_{load} = lead or distance the load moves per revolution of the actuator's drive shaft (P = pitch = $1/d_{load})$

D_{total} = total move distance

 θ_{step} = driver step resolution (steps/rev_{motor})

i = gear reduction ratio (rev_{motor}/rev_{gearshaft})

 ${\rm T}_{\rm accel}$ = motor torque required to accelerate and decelerate the total system inertia (including motor inertia)

 $T_{\mbox{run}}$ = constant motor torque requirement to run the mechanism due to friction, external load forces, etc.

t_{total} = move time

Step 2 - Determine the Positioning Resolution of the Load

Rearranging **Equation 4** to calculate the required stepping drive resolution:

 $u_{step} = (\mathbf{d}_{load} \div \mathbf{i}) \div \mathbf{L}_{\theta}$ = ((3.14 x 1.5) ÷ 5) ÷ 0.001 = 942 steps/rev where $\mathbf{d}_{load} = \pi$ x Pulley Diameter.

With the 5:1 gear reduction, the stepping system can be set at 1000 steps/rev to slightly exceed the required load positioning resolution.

Reduction is almost always required with a belt drive, and a 5:1 planetary gearhead is common.

Step 3 – Determine the Motion Profile

From **Equation ①**, the total pulses to make the required move is:

 $\mathbf{P_{total}} = (\mathbf{D_{total}} \div (\mathbf{d_{load}} \div \mathbf{i})) \times \theta_{step}$ = 50 ÷ ((3.14 × 1.5) ÷ 5) × 1000 ≈ 53.079 pulses

From **Equation (4)**, the running frequency for a trapezoidal move is:

 $\begin{aligned} \mathbf{f}_{\mathsf{TRAP}} &= (\mathbf{P}_{\mathsf{total}} - (\mathbf{f}_{\mathsf{start}} \times \mathbf{t}_{\mathsf{ramp}})) \div (\mathbf{t}_{\mathsf{total}} - \mathbf{t}_{\mathsf{ramp}}) \\ &= 53,079 \div (4 - 1) \\ &\approx 17,693 \text{ Hz} \\ &\text{where accel time is 25\% of total move time and starting speed is zero.} \\ &= 17,693 \text{ Hz} \times (60 \text{ sec}/1 \text{ min}) \div 1000 \text{ steps/rev} \\ &\approx 1,062 \text{ RPM motor speed} \end{aligned}$

Step 4 - Determine the Required Motor Torque

Using the equations in Table 1:

 $\begin{array}{l} J_{total} = J_{motor} + J_{gear} + ((J_{pulleys} + J_W) \div i^2) \\ \mbox{For this example, let's assume the gearbox inertia is zero.} \end{array}$

 $\begin{aligned} \mathbf{J}_{\mathbf{W}} &= (\mathbf{W} \div (g \times e)) \times r^2 \\ &= (3 \div (386 \times 0.8)) \times 0.752 \\ &\approx 0.0055 \ \text{Ib} \cdot \text{in} \cdot \text{sec}^2 \end{aligned}$

Pulley inertia (remember there are two pulleys) can be calculated as:

 $J_{pulleys} ≈ ((\pi x L x p x r^4) ÷ (2g)) x 2$ ≈ ((3.14 x 0.75 x 0.098 x 0.754) ÷ (2 x 386)) x 2≈ 0.00019 lb·in·sec²

The inertia of the load and pulleys reflected to the motor is:

 $\begin{aligned} J_{\text{(pulleys + load) to motor}} &= ((J_{\text{pulleys}} + J_{\text{W}}) \div i^2) \\ &\approx ((0.0055 + 0.00019) \div 52) \approx 0.00023 \text{ Ib} \cdot \text{in} \cdot \text{sec}^2 \end{aligned}$

The torque required to accelerate the inertia is:

$$\begin{split} \mathbf{T}_{acc} &\approx \mathbf{J}_{total} \times (\Delta speed \div \Delta time) \times 0.1 \\ &= 0.00023 \times (1062 \div 1) \times 0.1 \\ &= 0.025 \text{ lb-in} \\ \mathbf{T}_{run} &= (\mathbf{F}_{total} \times \mathbf{r}) \div \mathbf{i} \\ \mathbf{F}_{total} &= \mathbf{F}_{ext} + \mathbf{F}_{friction} + \mathbf{F}_{gravity} \\ &= 0 + \mu W cosu + 0 = 0.05 \times 3 = 0.15 \text{ lb} \\ \mathbf{T}_{run} &= (0.15 \times 0.75) \div 5 \\ &\approx 0.0225 \text{ lb-in} \end{split}$$

From **Equation (5**, the required motor torque is:

 $T_{motor} = T_{accel} + T_{run} = 0.025 + 0.0225 \approx 0.05 \text{ lb·in}$

However, this is the required motor torque before we have picked a motor and included the motor inertia.

Step 5 - Select & Confirm the Stepping Motor & Driver System

It looks like a reasonable choice for a motor would be the STP-MTR-17048 or NEMA 17 motor. This motor has an inertia of:

J_{motor} = 0.00006 lb·in·sec²

The actual motor torque would be modified:

T_{accel} =**J**_{total} × (Δspeed ÷ Δtime) × 0.1= (0.00023 +**0.00006**) × (1062 ÷ 1) × 0.1 ≈ 0.03 lb·inso that:**T**_{motor} =**T**_{accel} +**T**_{run}= 0.03 + 0.0225 ≈ 0.0525 lb·in ≈ 0.84 oz·in

It looks like the STP-MTR-17048 stepping motor will work. However, we still need to check the load to motor inertia ratio:

 $\begin{array}{l} \textbf{Ratio} = \textbf{J}_{(\textbf{pulleys + load}) \text{ to motor } \div \textbf{J}_{motor} \\ = 0.00023 \div 0.00006 = 3.8 \end{array}$

It is best to keep the load-to-motor inertia ratio below 10, so 3.8 is within an acceptable range.

Index Table - Example Calculations

Step 1 – Define the Actuator and Motion Requirements

Diameter of index table = 12 inch Thickness of index table = 2 inch Table material = steel Number of workpieces = 8 Desired Resolution = 0.036° Gear Reducer = 25:1 Index angle = 45° Index time = 0.7 seconds

Definitions

 d_{load} = lead or distance the load moves per revolution of the actuator's drive shaft (P = pitch = $1/d_{\text{load}})$

D_{total} = total move distance

 θ_{step} = driver step resolution (steps/rev_{motor})

i = gear reduction ratio (rev_{motor}/rev_{gearshaft})

 ${\rm T}_{\rm accel}$ = motor torque required to accelerate and decelerate the total system inertia (including motor inertia)

 $T_{\mbox{run}}$ = constant motor torque requirement to run the mechanism due to friction, external load forces, etc.

t_{total} = move time

Step 2 - Determine the Positioning Resolution of the Load

Rearranging **Equation 4** to calculate the required stepping drive resolution:

 $\theta_{step} = (\mathbf{d}_{load} \div \mathbf{i}) \div \mathbf{L}_{\theta}$ $= (360^{\circ} \div 25) \div 0.036^{\circ}$ = 400 steps/rev

With the 25:1 gear reduction, the stepping system can be set at 400 steps/rev to equal the required load positioning resolution.

It is almost always necessary to use significant gear reduction when controlling a large inertia disk.

Step 3 - Determine the Motion Profile

From **Equation 1**, the total pulses to make the required move is:

 $\begin{aligned} \mathbf{P}_{\text{total}} &= (\mathbf{D}_{\text{total}} \div (\mathbf{d}_{\text{load}} \div \mathbf{i})) \times \mathbf{u}_{\text{step}} \\ &= (45^{\circ} \div (360^{\circ} \div 25) \times 400) \\ &= 1250 \text{ pulses} \end{aligned}$

From **Equation (4)**, the running frequency for a trapezoidal move is:

 $\begin{aligned} \mathbf{f}_{\mathsf{TRAP}} &= (\mathbf{P}_{\mathsf{total}} - (\mathbf{f}_{\mathsf{start}} \times \mathbf{t}_{\mathsf{ramp}})) \div (\mathbf{t}_{\mathsf{total}} - \mathbf{t}_{\mathsf{ramp}}) \\ &= 1,250 \div (0.7 - 0.17) \approx 2,360 \text{ Hz} \\ &\text{where accel time is } 25\% \text{ of total move time and starting speed is zero.} \\ &= 2,360 \text{ Hz} \times (60 \text{ sec}/1 \text{ min}) \div 400 \text{ steps/rev} \\ &\approx 354 \text{ RPM} \end{aligned}$

Step 4 - Determine the Required Motor Torque

Using the equations in Table 1:

 $J_{total} = J_{motor} + J_{gear} + (J_{table} \div i^2)$ For this example, let's assume the gearbox inertia is zero.

 $\begin{aligned} & \textbf{J}_{\textbf{table}} \approx (\pi \ x \ L \ x \ p \ x \ f^4) \div (2g) \\ & \approx (3.14 \ x \ 2 \ x \ 0.28 \ x \ 1296) \div (2 \ x \ 386) \\ & \approx 2.95 \ lb \cdot in \cdot sec^2 \end{aligned}$

The inertia of the indexing table reflected to the motor is:

 $J_{\text{table to motor}} = J_{\text{table}} \div i^2 \\ \approx 0.0047 \text{ lb} \cdot \text{in} \cdot \text{sec}^2$

The torque required to accelerate the inertia is:

$$\begin{aligned} \mathbf{T}_{\mathbf{accel}} &\approx \mathbf{J}_{\mathbf{total}} \times (\mathsf{aspeed} \div \mathsf{atime}) \times 0.1 \\ &= 0.0047 \times (354 \div 0.17) \times 0.1 \\ &\approx 1.0 \text{ lb-in} \end{aligned}$$

From **Equation (5)**, the required motor torque is:

 $\mathbf{T}_{\text{motor}} = \mathbf{T}_{\text{accel}} + \mathbf{T}_{\text{run}}$ = 1.0 + 0 = 1.0 lb·in

However, this is the required motor torque before we have picked a motor and included the motor inertia.

Step 5 - Select & Confirm the Stepping Motor & Driver System

It looks like a reasonable choice for a motor would be the STP-MTR-34066, or NEMA 34 motor. This motor has an inertia of:

J_{motor} = 0.0012 lb·in·sec²

The actual motor torque would be modified:

$$\begin{split} \mathbf{T}_{accel} &= \mathbf{J}_{total} \times (\texttt{aspeed} \div \texttt{atime}) \times 0.1 \\ &= (0.0047 + \mathbf{0.0012}) \times (354 \div 0.17) \times 0.1 \\ &\approx 1.22 \text{ lb·in} \\ &\text{ so that:} \\ \mathbf{T}_{motor} &= \mathbf{T}_{accel} + \mathbf{T}_{run} \\ &= 1.22 + 0 \\ &= 1.22 \text{ lb·in} = 19.52 \text{ oz·in} \end{split}$$

It looks like the STP-MTR-34066 stepping motor will work. However, we still need to check the load to motor inertia ratio:

 $\begin{aligned} \textbf{Ratio} &= \textbf{J}_{\textbf{table to motor}} \div \textbf{J}_{\textbf{motor}} \\ &= 0.0047 \div 0.0012 = 3.9 \end{aligned}$

It is best to keep the load-to-motor inertia ratio below 10, so 3.9 is within an acceptable range.

Engineering Unit Conversion Tables, Formulae, & Definitions:

	Conversion of Length							
To convert A to B,		В						
ent	try in the table.	μm	mm	mm m mil		in	ft	
	μm	1	1.000E-03	1.000E-06	3.937E-02	3.937E-05	3.281E-06	
A	mm	1.000E+03	1	1.000E-03	3.937E+01	3.937E-02	3.281E-03	
	m	1.000E+06	1.000E+03	1	3.937E+04	3.937E+01	3.281E+00	
	mil	2.540E+01	2.540E-02	2.540E-05	1	1.000E-03	8.330E-05	
	in	2.540E+04	2.540E+01	2.540E-02	1.000E+03	1	8.330E-02	
	ft	3.048E+05	3.048E+02	3.048E-01	1.200E+04	1.200E+01	1	

	Conversion of Torque							
To convert A to B,		В						
ent	try in the table.	N∙m	kg∙m	kg∙cm	oz∙in	lb∙in	lb∙ft	
	N∙m	1	1.020E-01	1.020E+01	1.416E+02	8.850E+00	7.380E-01	
A	kg∙m	9.810E+00	1	1.000E+02	1.390E+03	8.680E+01	7.230E+00	
	kg∙cm		1.000E-02	1	1.390E+01	8.680E-01	7.230E-02	
	oz∙in	7.060E-03	7.200E-04	7.200E-02	1	6.250E-02	5.200E-03	
	lb∙in	1.130E-01	1.150E-02	1.150E+00	1.600E+01	1	8.330E-02	
	lb∙ft	1.356E+00	1.380E-01	1.383E+01	1.920E+02	1.200E+01	1	

	Conversion of Moment of Inertia								
To convert A to B, multiply A by the entry in the table.		В							
		kg·m ²	kg·cm·s ²	oz·in·s ²	lb•in•s²	oz•in ²	lb∙in²	lb∙ft²	
	kg·m ²	1	1.020E+01	1.416E+02	8.850E+00	5.470E+04	3.420E+03	2.373E+01	
A	kg·cm·s ²	9.800E-02	1	1.388E+01	8.680E-01	5.360E+03	3.350+02	2.320E+00	
	oz·in·s ²	7.060E-03	7.190E-02	1	6.250E-02	3.861E+02	2.413E+01	1.676E-01	
	lb·in·s ²	1.130E-01	1.152E+00	1.600E+01	1	6.180E+03	3.861E+02	2.681E+00	
	oz•in ²	1.830E-05	1.870E-04	2.590E-03	1.620E-04	1	6.250E-02	4.340E-04	
	lb•in²	2.930E-04	2.985E-03	4.140E-02	2.590E-03	1.600E+01	1	6.940E-03	
	lb•ft²	4.210E-02	4.290E-01	5.968E+00	3.730E-01	2.304E+03	1.440E+02	1	

Engineering Unit Conversion Tables, Formulae, & Definitions (cont'd):

General Formulae & Definitions			
Description:	Equations:		
Gravity	gravity = 9.8 m/s²; 386 in/s²		
Torque	$T = J \cdot \alpha; \alpha = rad/s^2$		
Power (Watts)	$P(W) = T(N \cdot m) \cdot \omega (rad/s)$		
Power (Horsepower)	P (hp) = T (lb·in) · v (rpm) / 63,024		
Horsepower	1 hp = 746W		
Revolutions	1 rev = 1,296,000 arc·sec / 21,600 arc·min		

Equations for Straight-Line Velocity & Constant Acceleration				
Description:	Equations:			
Final velocity	v _f = v _i + at final velocity = (initial velocity) + (acceleration)(time)			
Final position	$x_f = x_i + \frac{1}{2}(v_i + v_f)t$ final position = initial position + [(1/2)(initial velocity + final velocity)(time)]			
Final position	x _f = x ₁ + v _i t + ½at ² final position = initial position + (initial velocity)(time) + (1/2)(acceleration)(time squared)			
Final velocity squared	v _f ² = v _i ² + 2a(x _f - x _i) final velocity squared = initial velocity squared + [(2)(acceleration)(final position – initial position)]			

BLANK PAGE