Amplifier for synthetic optical fibers

PNP type - light/dark-ON output

<table>
<thead>
<tr>
<th>Part number</th>
<th>DFP-AP-1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing range (on mat white paper)</td>
<td>200 mm</td>
</tr>
<tr>
<td>with CF-DB1-20</td>
<td></td>
</tr>
</tbody>
</table>

Wiring

- Orange wire (1) +U
- Black wire (4) A1
- White wire (2) A2
- Green wire (3) 0 V

- Orange wire (1) +U
- Black wire (4) A1
- White wire (2) A2
- Green wire (3) 0 V

Housing: PBTP

A1: light/dark-ON
A2: excess gain

10 ... 30 VDC
200 mA max.

Ce

Amplifier for synthetic optical fibers

PNP type - light/dark-ON output

<table>
<thead>
<tr>
<th>Part number</th>
<th>DFP-AP-1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing range (on mat white paper)</td>
<td>200 mm</td>
</tr>
<tr>
<td>with CF-DB1-20</td>
<td></td>
</tr>
</tbody>
</table>

Wiring

- Orange wire (1) +U
- Black wire (4) A1
- White wire (2) A2
- Green wire (3) 0 V

- Orange wire (1) +U
- Black wire (4) A1
- White wire (2) A2
- Green wire (3) 0 V

Housing: PBTP

A1: light/dark-ON
A2: excess gain

10 ... 30 VDC
200 mA max.

Ce

Amplifier for synthetic optical fibers

PNP type - light/dark-ON output

<table>
<thead>
<tr>
<th>Part number</th>
<th>DFP-AP-1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing range (on mat white paper)</td>
<td>200 mm</td>
</tr>
<tr>
<td>with CF-DB1-20</td>
<td></td>
</tr>
</tbody>
</table>

Wiring

- Orange wire (1) +U
- Black wire (4) A1
- White wire (2) A2
- Green wire (3) 0 V

- Orange wire (1) +U
- Black wire (4) A1
- White wire (2) A2
- Green wire (3) 0 V

Housing: PBTP

A1: light/dark-ON
A2: excess gain

10 ... 30 VDC
200 mA max.

Ce

Amplifier for synthetic optical fibers

PNP type - light/dark-ON output

<table>
<thead>
<tr>
<th>Part number</th>
<th>DFP-AP-1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing range (on mat white paper)</td>
<td>200 mm</td>
</tr>
<tr>
<td>with CF-DB1-20</td>
<td></td>
</tr>
</tbody>
</table>

Wiring

- Orange wire (1) +U
- Black wire (4) A1
- White wire (2) A2
- Green wire (3) 0 V

- Orange wire (1) +U
- Black wire (4) A1
- White wire (2) A2
- Green wire (3) 0 V

Housing: PBTP

A1: light/dark-ON
A2: excess gain

10 ... 30 VDC
200 mA max.

Ce

Amplifier for synthetic optical fibers

PNP type - light/dark-ON output

<table>
<thead>
<tr>
<th>Part number</th>
<th>DFP-AP-1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing range (on mat white paper)</td>
<td>200 mm</td>
</tr>
<tr>
<td>with CF-DB1-20</td>
<td></td>
</tr>
</tbody>
</table>

Wiring

- Orange wire (1) +U
- Black wire (4) A1
- White wire (2) A2
- Green wire (3) 0 V

- Orange wire (1) +U
- Black wire (4) A1
- White wire (2) A2
- Green wire (3) 0 V

Housing: PBTP

A1: light/dark-ON
A2: excess gain

10 ... 30 VDC
200 mA max.

Ce

Amplifier for synthetic optical fibers

PNP type - light/dark-ON output

<table>
<thead>
<tr>
<th>Part number</th>
<th>DFP-AP-1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing range (on mat white paper)</td>
<td>200 mm</td>
</tr>
<tr>
<td>with CF-DB1-20</td>
<td></td>
</tr>
</tbody>
</table>

Wiring

- Orange wire (1) +U
- Black wire (4) A1
- White wire (2) A2
- Green wire (3) 0 V

- Orange wire (1) +U
- Black wire (4) A1
- White wire (2) A2
- Green wire (3) 0 V

Housing: PBTP

A1: light/dark-ON
A2: excess gain

10 ... 30 VDC
200 mA max.

Ce
Device mounting
- Mounting of the device is most easily effected by snapping 1 / 2 onto a top-hat rail (according to DIN / EN 50022).
- Alternatively, fixing can be effected using M3 screws through the fixing holes 3 provided.
- To remove the device from the rail, push towards the optical fiber 4, and lift 5.

Fixing the optical fibers
- Lift catch 6.
- Insert the optical fibers through the two holes 7 provided into the device.
- Lower catch 6.

Important:
- When inserting the optical fibers, the resistance of the device’s internal O-ring seal must be overcome.
- The optical fibers must be fed right to the stop without fail.
- The optical fibers must not be crushed.
- The sequence (emitter / receiver) is usually immaterial, however:
 - With coaxial optical fibers, the optical fiber bundle 8 must be connected on the receiver side 6. The emitter and receiver openings are marked with arrows on the housing.

These proximity switches must not be used in applications where the safety of people is dependent on their functioning. Terms of delivery and rights to change design reserved.

Device mounting
- Mounting of the device is most easily effected by snapping 1 / 2 onto a top-hat rail (according to DIN / EN 50022).
- Alternatively, fixing can be effected using M3 screws through the fixing holes 3 provided.
- To remove the device from the rail, push towards the optical fiber 4, and lift 5.

Fixing the optical fibers
- Lift catch 6.
- Insert the optical fibers through the two holes 7 provided into the device.
- Lower catch 6.

Important:
- When inserting the optical fibers, the resistance of the device’s internal O-ring seal must be overcome.
- The optical fibers must be fed right to the stop without fail.
- The optical fibers must not be crushed.
- The sequence (emitter / receiver) is usually immaterial, however:
 - With coaxial optical fibers, the optical fiber bundle 8 must be connected on the receiver side 6. The emitter and receiver openings are marked with arrows on the housing.

These proximity switches must not be used in applications where the safety of people is dependent on their functioning. Terms of delivery and rights to change design reserved.
Amplifier for synthetic optical fibers

Part number

DFP-AP-1F

Sensing range (on mat white paper) 200 mm

Wiring

U, 10 ... 30 VDC 200 mA max.

Housing PBTP

A1 light/dark-ON

A2 excess gain

Pin assignment (device) :

COVADC123

PNP type - light/dark-ON output
Device mounting

- Mounting of the device is most easily effected by snapping 1 / 2 onto a top-hat rail (according to DIN / EN 50022).
- Alternatively, fixing can be effected using M3 screws through the fixing holes 3 provided.
- To remove the device from the rail, push towards the optical fiber 4, and lift 5.

Fixing the optical fibers

- Lift catch 6.
- Insert the optical fibers through the two holes 7 provided into the device.
- Lower catch 6.

Important:
- When inserting the optical fibers, the resistance of the device’s internal O-ring seal must be overcome.
- The optical fibers must be fed right to the stop without fail.
- The optical fibers must not be crushed.
- The sequence (emitter / receiver) is usually immaterial, however:
- With coaxial optical fibers, the optical fiber bundle 8 must be connected on the receiver side 9. The emitter and receiver openings are marked with arrows on the housing.

These proximity switches must not be used in applications where the safety of people is dependent on their functioning. Terms of delivery and rights to change design reserved.

Device mounting

- Mounting of the device is most easily effected by snapping 1 / 2 onto a top-hat rail (according to DIN / EN 50022).
- Alternatively, fixing can be effected using M3 screws through the fixing holes 3 provided.
- To remove the device from the rail, push towards the optical fiber 4, and lift 5.

Fixing the optical fibers

- Lift catch 6.
- Insert the optical fibers through the two holes 7 provided into the device.
- Lower catch 6.

Important:
- When inserting the optical fibers, the resistance of the device’s internal O-ring seal must be overcome.
- The optical fibers must be fed right to the stop without fail.
- The optical fibers must not be crushed.
- The sequence (emitter / receiver) is usually immaterial, however:
- With coaxial optical fibers, the optical fiber bundle 8 must be connected on the receiver side 9. The emitter and receiver openings are marked with arrows on the housing.

These proximity switches must not be used in applications where the safety of people is dependent on their functioning. Terms of delivery and rights to change design reserved.