Amplifier for synthetic optical fibers

NPN type - light/dark-ON output

Part number DFP-AN-1A

Sensing range (on mat white paper) 200 mm

with CF-DB1-20

Wiring

U_\text{a} 10 \ldots 30 \text{VDC}
I_\text{a} 200 \text{mA max.}

Housing PBTP

Last charge load

A_1 light/dark-ON
A_2 excess gain

COVADC122

Amplifier for synthetic optical fibers

NPN type - light/dark-ON output

Part number DFP-AN-1A

Sensing range (on mat white paper) 200 mm

with CF-DB1-20

Wiring

U_\text{a} 10 \ldots 30 \text{VDC}
I_\text{a} 200 \text{mA max.}

Housing PBTP

Last charge load

A_1 light/dark-ON
A_2 excess gain

COVADC122

Amplifier for synthetic optical fibers

NPN type - light/dark-ON output

Part number DFP-AN-1A

Sensing range (on mat white paper) 200 mm

with CF-DB1-20

Wiring

U_\text{a} 10 \ldots 30 \text{VDC}
I_\text{a} 200 \text{mA max.}

Housing PBTP

Last charge load

A_1 light/dark-ON
A_2 excess gain

COVADC122
Device mounting
- Mounting of the device is most easily effected by snapping 1 / 2 onto a top-hat rail (according to DIN / EN 50022).
- Alternatively, fixing can be effected using M3 screws through the fixing holes 3 provided.
- To remove the device from the rail, push towards the optical fiber 4, and lift 5.

Fixing the optical fibers
- Lift catch 6.
- Insert the optical fibers through the two holes 7 provided into the device.
- Lower catch 6.

Important:
- When inserting the optical fibers, the resistance of the device’s internal O-ring seal must be overcome.
- The optical fibers must be fed right to the stop without fail.
- The optical fibers must not be crushed.
- The sequence (emitter / receiver) is usually immaterial, however:
- With coaxial optical fibers, the optical fiber bundle 8 must be connected on the receiver side 9. The emitter and receiver openings are marked with arrows on the housing.

These proximity switches must not be used in applications where the safety of people is dependent on their functioning. Terms of delivery and rights to change design reserved.

Note:
- Change design reserved.
Amplifier for synthetic optical fibers

NPN type - light/dark-ON output

Part number

DFP-AN-1F

Sensing range (on mat white paper)

200 mm

Wiring

![Wiring diagram](image_url)

Pin assignment (device):

COVADC122
Device mounting

- Mounting of the device is most easily effected by snapping 1 / 2 onto a top-hat rail (according to DIN / EN 50022).
- Alternatively, fixing can be effected using M3 screws through the fixing holes 3 provided.
- To remove the device from the rail, push towards the optical fiber 4, and lift 5.

Fixing the optical fibers

- Lift catch 6.
- Insert the optical fibers through the two holes 7 provided into the device.
- Lower catch 8.

Important:

- When inserting the optical fibers, the resistance of the device's internal O-ring seal must be overcome.
- The optical fibers must be fed right to the stop without fail.
- The optical fibers must not be crushed.
- The sequence (emitter / receiver) is usually immaterial, however:
- With coaxial optical fibers, the optical fiber bundle 9 must be connected on the receiver side 10. The emitter and receiver openings are marked with arrows on the housing.

These proximity switches must not be used in applications where the safety of people is dependent on their functioning. Terms of delivery and rights to change design reserved.

Device mounting

- Mounting of the device is most easily effected by snapping 1 / 2 onto a top-hat rail (according to DIN / EN 50022).
- Alternatively, fixing can be effected using M3 screws through the fixing holes 3 provided.
- To remove the device from the rail, push towards the optical fiber 4, and lift 5.

Fixing the optical fibers

- Lift catch 6.
- Insert the optical fibers through the two holes 7 provided into the device.
- Lower catch 8.

Important:

- When inserting the optical fibers, the resistance of the device's internal O-ring seal must be overcome.
- The optical fibers must be fed right to the stop without fail.
- The optical fibers must not be crushed.
- The sequence (emitter / receiver) is usually immaterial, however:
- With coaxial optical fibers, the optical fiber bundle 9 must be connected on the receiver side 10. The emitter and receiver openings are marked with arrows on the housing.

These proximity switches must not be used in applications where the safety of people is dependent on their functioning. Terms of delivery and rights to change design reserved.

Device mounting

- Mounting of the device is most easily effected by snapping 1 / 2 onto a top-hat rail (according to DIN / EN 50022).
- Alternatively, fixing can be effected using M3 screws through the fixing holes 3 provided.
- To remove the device from the rail, push towards the optical fiber 4, and lift 5.

Fixing the optical fibers

- Lift catch 6.
- Insert the optical fibers through the two holes 7 provided into the device.
- Lower catch 8.

Important:

- When inserting the optical fibers, the resistance of the device's internal O-ring seal must be overcome.
- The optical fibers must be fed right to the stop without fail.
- The optical fibers must not be crushed.
- The sequence (emitter / receiver) is usually immaterial, however:
- With coaxial optical fibers, the optical fiber bundle 9 must be connected on the receiver side 10. The emitter and receiver openings are marked with arrows on the housing.

These proximity switches must not be used in applications where the safety of people is dependent on their functioning. Terms of delivery and rights to change design reserved.

Device mounting

- Mounting of the device is most easily effected by snapping 1 / 2 onto a top-hat rail (according to DIN / EN 50022).
- Alternatively, fixing can be effected using M3 screws through the fixing holes 3 provided.
- To remove the device from the rail, push towards the optical fiber 4, and lift 5.

Fixing the optical fibers

- Lift catch 6.
- Insert the optical fibers through the two holes 7 provided into the device.
- Lower catch 8.

Important:

- When inserting the optical fibers, the resistance of the device's internal O-ring seal must be overcome.
- The optical fibers must be fed right to the stop without fail.
- The optical fibers must not be crushed.
- The sequence (emitter / receiver) is usually immaterial, however:
- With coaxial optical fibers, the optical fiber bundle 9 must be connected on the receiver side 10. The emitter and receiver openings are marked with arrows on the housing.

These proximity switches must not be used in applications where the safety of people is dependent on their functioning. Terms of delivery and rights to change design reserved.

Important:

- When inserting the optical fibers, the resistance of the device's internal O-ring seal must be overcome.
- The optical fibers must be fed right to the stop without fail.
- The optical fibers must not be crushed.
- The sequence (emitter / receiver) is usually immaterial, however:
- With coaxial optical fibers, the optical fiber bundle 9 must be connected on the receiver side 10. The emitter and receiver openings are marked with arrows on the housing.

These proximity switches must not be used in applications where the safety of people is dependent on their functioning. Terms of delivery and rights to change design reserved.