SERIE BX80

MANUALE DI INSTALLAZIONE

SCHIEMI DI COLLEGAMENTO

<table>
<thead>
<tr>
<th>Unità PMP</th>
<th>Ricevitore</th>
<th>SCHEMA DI COLLEGAMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COCCODI EOLICI

<table>
<thead>
<tr>
<th>1-Bt</th>
<th>2-Bt</th>
<th>3-Bt</th>
<th>4-Bt</th>
<th>5-Bt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blu</td>
<td>Bianco</td>
<td>Nero</td>
<td>Grigio</td>
<td>Grigio</td>
</tr>
</tbody>
</table>

CODICI VARIANTE

<table>
<thead>
<tr>
<th>Codice</th>
<th>Applicabile</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIZIONE GENERALE

Serve per area di ad alta risoluzione composto da una coppia proiettore e ricevitore con 12 ottiche e scale ottiche obbligate. Il proiettore è calibrato in un nuovo contenitore per il miglioramento della qualità ottica. Il ricevitore è progettato per un'ottima qualità ottica nelle condizioni di illuminazione non ottimali.

DESCRIZIONE DEL CODICE

<table>
<thead>
<tr>
<th>Codice</th>
<th>Breve Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

DESENGERI MECANICI

<table>
<thead>
<tr>
<th>Modello</th>
<th>SX</th>
<th>WX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ATTENZIONE

Questo prodotto non è un componente di sicurezza e non deve essere usato in applicazioni di salvaguardia della sicurezza delle persone.
For ATEX models read the instructions safety before installation

GENERAL DESCRIPTION

High-resolution area sensor made up of 4 cross-

corder and receiver with 17 optics and

called spectrometer. The product is contained in a

SUPPLIED INFORMATION

- 1.8 x 1.2 cm media transfering optical
- 3.5 x 11.5 cm x 11.5 cm potted circuit
- 1.8 x 1.2 cm media transfering optical
- 3.5 x 11.5 cm x 11.5 cm potted circuit

CONNECTORS

- In case of combined load, resistance and
- capacity, the maximum admissible
- capacity is 100 W for all types of
- voltage and current.

INSTALLATION

- Make sure that the operating voltage is
- correctly stabilized with a maximum ripple
- being within the specified value as stated in
- the catalogue.

- In the event that the noise induced by the
- power lines is greater than that specified by
- the EC regulation (interference immunity),
- detect the sensor cables from the power and
- high voltage lines and insert the cable in
- an earthed metal conduit. Furthermore, it
- is advisable to connect the sensor directly
- to the supply source and not downstream of
- other devices.

- To extend the supply and output cables, a
- cable with a maximum cross-section of 1 x 1 mm² must be used. The length of such an
- extension is limited to a maximum of 100 m (with respect to a minimum voltage and
- current, 100 mA).

- The sensor will become auto-calibrated
- once the supply voltage is applied. During
- this time, the outputs will be off.

- The use of the brackets ST 16 C is advisable
- for a perfect mounting and alignment.

- Do not allow dust, water and condensation to
- deposit on the optics.

- Avoid exposing the optical to
- organic solvents.

- Do not allow strong light or sunlight to fall
- directly onto the optics of the receiver.

- For cleaning, use a damp cloth and then
- dry with a soft cloth.

- In case of systems standing inside, in order
- to avoid interference, it is necessary to keep
- a minimum distance between the two
- optical axes. This distance must be
- directly proportional to the operating
- distance: it can be 50 m with respect to
- an operating distance of 100 m, 100 m
- with respect to operating distances of 2 m.

Alignment/Adjustment

1. Place the optic windows, opposite

2. Check that the distance between emitter
- and receiver is the same as specified for
- the model in use.

3. Prepare the bracket so that the difference
- between the axes of two optos (and
- between the axes of the two optos) is
- as close as possible.

4. Power the system. The green LEDs will turn
- on, indicating that the power is correct.
- Turn the receiver to turn on the first
- green LED. The red LED on the emitter will
- have to be switched on, and verify in this way the
- presence of the correct synchronizations.

5. Correct the direction of the emitter by
- observing the position of the red LED and
- verifying the position in which the LED
- completely switches on or off a weak
- light impact on the receiver.

6. Correct the direction of the receiver by
- observing its red LED until it is completely
- switched on or off a weak light. Fasten
- temporarily the receiver in this position.

7. Repeat points 5 and 6 until you reach
- a defined tolerance of at least 3 ° for
- the emitter and a ± 1 ° for the receiver.

8. If you want to increase the sensitivity,
- in the event that the position of the
- optical axes is correct, the tolerance
- of ± 1 ° must be used. The points from
- 8 to 10 describe how to
- find the best possible signal range,
- the perfect alignment of the optoemitter
- and receiver, to make it see in particu-
- lar hard environmental signals. For the use in
- normal conditions, it is sufficient to obtain
- the red LED switching off.

9. Turn the trimmer on the emitter
- anticlockwise until a weak light
- appears on the receiver red LED.

10. Improve the position by rotating
- points 8 and 9 until the trimmer is to
- the maximum.

11. To detect small objects, turn the trimmer
- clockwise of some degree more than
- the position in which the LED switching
- off was obtained.

12. Check the detection of the required diame-
- ters, if any.

Analog output:

- In addition to the logic output PNP or NPN,
- the models with analog output are equipped
- with further output controlled by analog and
- current and a maximum of 100 mA,
- allowing for the digital inputs,
- between 5 and 10 mA, the power to
- the load.

- The analog output is controlled by steps,
- increasing the K parameter, the K function
- does not change by steps of 5, corresponding
- to the change of the index or position
- of the object detected.

- The analog output progresses by steps,
- increasing the K parameter, the K function
- does not change by steps of 5, corresponding
- to the change of the index or position
- of the object detected.

- The analog output progresses by steps,
- increasing the K parameter, the K function
- does not change by steps of 5, corresponding
- to the change of the index or position
- of the object detected.

- The analog output progresses by steps,
- increasing the K parameter, the K function
- does not change by steps of 5, corresponding
- to the change of the index or position
- of the object detected.

- The analog output progresses by steps,
- increasing the K parameter, the K function
- does not change by steps of 5, corresponding
- to the change of the index or position
- of the object detected.

- The analog output progresses by steps,
- increasing the K parameter, the K function
- does not change by steps of 5, corresponding
- to the change of the index or position
- of the object detected.

- The analog output progresses by steps,
- increasing the K parameter, the K function
- does not change by steps of 5, corresponding
- to the change of the index or position
- of the object detected.

- The analog output progresses by steps,
- increasing the K parameter, the K function
- does not change by steps of 5, corresponding
- to the change of the index or position
- of the object detected.

- The analog output progresses by steps,
- increasing the K parameter, the K function
- does not change by steps of 5, corresponding
- to the change of the index or position
- of the object detected.

- The analog output progresses by steps,
- increasing the K parameter, the K function
- does not change by steps of 5, corresponding
- to the change of the index or position
- of the object detected.