ProSense LPM1 Series Meter
Loop-powered 4 to 20mA process display unit

Operating Instructions
1 Document Information ... 3
 1.1 Document function .. 3
 1.2 Document conventions .. 3

2 Basic Safety Instructions ... 5
 2.1 Requirements for personnel ... 5
 2.2 Designated use ... 6
 2.3 Workplace safety .. 6
 2.4 Operational safety ... 6
 2.5 Product safety .. 7

3 Scope of Delivery .. 7

4 Installation .. 7
 4.1 Incoming acceptance, transport, storage 7
 4.2 Installation conditions .. 8
 4.4 Post-installation check ... 11

5 Wiring ... 11
 5.1 Quick wiring guide ... 12
 5.2 Inserting the cable, field housing .. 14
 5.3 Connecting to functional grounding .. 15
 5.4 Degree of protection .. 16
 5.5 Post-connection check .. 17

6 Operation ... 17
 6.1 Operating functions ... 18

7 Commissioning ... 19
 7.1 Post-installation check and switching on the device 19
 7.2 Operating matrix .. 19

8 Troubleshooting .. 22
 8.1 Error limits as per NAMUR NE 43 .. 22
 8.2 Diagnostic messages ... 22

9 Maintenance .. 23

10 Disposal .. 23

11 Mounting Kit ... 23

12 Technical data .. 24
 12.1 Input ... 24
 12.2 Power supply ... 24
 12.3 Performance characteristics .. 24
 12.4 Installation ... 25
 12.5 Environment .. 25
 12.6 Mechanical construction .. 27
1 Document Information

1.1 Document function

These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

1.2 Document conventions

1.2.1 Safety symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![DANGER]</td>
<td>DANGER! This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.</td>
</tr>
<tr>
<td>![WARNING]</td>
<td>WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.</td>
</tr>
<tr>
<td>![CAUTION]</td>
<td>CAUTION! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.</td>
</tr>
<tr>
<td>![NOTICE]</td>
<td>NOTICE! This symbol contains information on procedures and other facts which do not result in personal injury.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| | Direct current
A terminal to which DC voltage is applied or through which direct current flows. |
| | Alternating current
A terminal to which alternating voltage is applied or through which alternating current flows. |
| | Direct current and alternating current
• A terminal to which alternating voltage or DC voltage is applied.
• A terminal through which alternating current or direct current flows. |
| | Ground connection
A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system. |
| | Protective ground connection
A terminal which must be connected to ground prior to establishing any other connections. |
1.2.2 Electrical symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Equipotential connection](image) | Equipotential connection
A connection that has to be connected to the plant grounding system: This may be a potential equalization line or a star grounding system depending on national or company codes of practice. |
| ![ESD - Electrostatic discharge](image) | ESD - Electrostatic discharge
Protect the terminals against electrostatic discharge. Failure to comply with this instruction can result in the destruction of parts or malfunction of the electronics. |

1.2.3 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ![Permitted](image) | Permitted
Indicates procedures, processes or actions that are permitted. |
| ![Preferred](image) | Preferred
Procedures, processes or actions that are preferred. |
| ![Forbidden](image) | Forbidden
Indicates procedures, processes or actions that are forbidden. |
| ![Tip](image) | Tip
Indicates additional information. |
| ![Reference to documentation](image) | Reference to documentation
Refers to the corresponding device documentation. |
| ![Reference to page](image) | Reference to page
Refers to the corresponding page number. |
| ![Reference to graphic](image) | Reference to graphic |
| ![Series of steps](image) | Series of steps |
| ![Result of a step](image) | Result of a step |
| ![Help in the event of a problem](image) | Help in the event of a problem |
| ![Visual inspection](image) | Visual inspection |
1.2.4 Symbols for graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, ...</td>
<td>Item numbers</td>
</tr>
<tr>
<td>1., 2., 3., ...</td>
<td>Series of steps</td>
</tr>
<tr>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C, ...</td>
<td>Sections</td>
</tr>
<tr>
<td>→</td>
<td>Flow direction</td>
</tr>
<tr>
<td>⚠️</td>
<td>Hazardous area</td>
</tr>
<tr>
<td>⚠️</td>
<td>Indicates a hazardous area.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Safe area (non-hazardous area)</td>
</tr>
<tr>
<td>⚠️</td>
<td>Indicates a non-hazardous area.</td>
</tr>
</tbody>
</table>

1.2.5 Symbols for tools

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flat blade screwdriver</td>
</tr>
<tr>
<td></td>
<td>Allen key</td>
</tr>
<tr>
<td></td>
<td>Open-ended wrench</td>
</tr>
<tr>
<td></td>
<td>Torx screwdriver</td>
</tr>
</tbody>
</table>

2 Basic Safety Instructions

2.1 Requirements for personnel

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

- Trained, qualified specialists must have a relevant qualification for this specific function and task
- Are authorized by the plant owner/operator
- Are familiar with federal/national regulations
- Before beginning work, the specialist staff must have read and understood the instructions in the Operating Instructions and supplementary documentation as well as in the certificates (depending on the application)
- Following instructions and basic conditions
 The operating personnel must fulfill the following requirements:
- Being instructed and authorized according to the requirements of the task by the facility’s owner/operator
- Following the instructions in these Operating Instructions

2.2 Designated use
The process display unit displays analog process variables on its screen. The device is powered via the 4 to 20 mA current loop and does not require an additional power supply.
- The manufacturer accepts no liability for damages resulting from incorrect use or use other than that designated. It is not permitted to convert or modify the device in any way.
- Panel-mounted device (LPM1-A-PNL): The device is designed for installation in a panel and must only be operated in an installed state.
- Field device (LPM1-A-ENC and LPM1-A-HAZ): The device is designed for installation in the field.
- The device may only be operated under the permitted ambient conditions

2.3 Workplace safety
For work on and with the device:
- Wear the required personal protective equipment according to federal/national regulations.

2.4 Operational safety
Risk of injury!
- Operate the device in proper technical condition and fail-safe condition only.
- The operator is responsible for interference-free operation of the device.

Conversions to the device
Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers.
2.5 Product safety
This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

It meets general safety standards and legal requirements. It also complies with the EC directives listed in the device-specific EC Declaration of Conformity. Confirmed by the affixing of the CE mark to the device.

The measuring devices have also been tested by UL or CSA. See “Technical data” section.

3 Scope of Delivery
The scope of delivery of the device comprises:
- Panel mounted device (LPM1-A-PNL)
 - Process display unit
 - Operating Instructions
 - Fastening fixtures
- Field mounted device (LPM1-A-ENC, LPM1-A-HAZ)
 - Process display unit
 - Operating Instructions
 - CSA Control Drawing (LPM1-A-HAZ only)

4 Installation

4.1 Incoming acceptance, transport, storage
Compliance with the permitted environmental and storage conditions is mandatory. Precise specifications for this are provided in the “Technical data section”.

4.1.1 Incoming acceptance
On receipt of the goods, check the following points:
- Is the packaging or the content damaged?
- Is the delivery complete? Compare the scope of delivery against the information on your order form.

4.1.2 Transport and storage
Please note the following:
• Pack the device so that it is protected against impact for storage and transport. The original packaging provides optimum protection.
• The permitted storage temperature is –40 to +85 °C (–40 to +185 °F); it is possible to store the device at borderline temperatures for a limited period (48 hours maximum).

4.2 Installation conditions

At temperatures below –25 °C (–13 °F) the readability of the display can no longer be guaranteed.

4.2.1 Display unit in the panel-mount housing
Permitted ambient temperature range –40 to 60 °C (–40 to 140 °F), horizontal orientation. IP65 protection at front, IP20 at rear
See “Technical data” section.

4.2.2 Display unit in the field housing
Permitted ambient temperature range –40 to 60 °C (–40 to 140 °F). IP67 protection, NEMA 4x (aluminum housing).
See “Technical data” section.

4.3 Installation instructions
For the dimensions of the device, see “Technical data section”

4.3.1 Panel housing (LPM1-A-PNL)

Installation in a panel with a panel cutout 92x45 mm (3.62x1.77 in), max. panel thickness 13 mm (0.51 in).
1. Insert the device into the panel cutout from the front.
2. Fit the mounting clips on the side of the housing and tighten the set screws. Tightening screw torque: 0.4 to 0.6 Nm

4.3.2 Field housing (LPM1-A-ENC and LPM1-A-HAZ) Pipe mounting (with optional LPM1-BKT mounting kit)
The device can be mounted on a pipe with a diameter of up to 50.8 mm (2 in) with the mounting kit (sold separately).

1. Release the 4 housing screws.
2. Open the housing
3. Secure the mounting plate to the rear of the device with 4 screws supplied.
4. Guide the two gripper clamps through the mounting plate, fit them around the pipe and tighten.
Wall mounting (with optional LPM1-BKT mounting kit)

1. Use the mounting plate as a stencil and make two 6mm (0.24 in) bore holes, 82mm (3.23 in) apart. Secure the plate on the wall with 2 screws (not supplied).

2. Open the housing.

3. Secure the display unit on the mounting plate with the 4 screws supplied.

4. Close the cover and tighten the screws.

Without a mounting kit.

1. Open the housing.

2. Use the device as a stencil, four 6 mm (0.24 in) bore holes, 99 mm (3.9 in) apart on the horizontal plane, 66 mm (2.6 in) apart on the vertical plane.

3. Secure the display unit on the wall with 4 screws.

4. Close the cover and tighten the housing screws.
4.4 Post-installation check

4.4.1 Display unit in the panel-mount housing
• Is the seal undamaged?
• Are the mounting clips securely fastened on the housing of the device?
• Are the set screws properly tightened?
• Is the device located in the center of the panel cutout?

4.4.2 Display unit in the field housing
• Is the seal undamaged?
• Is the housing firmly screwed to the mounting plate?
• Is the mounting bracket firmly secured on the wall/pipe?
• Are the housing screws firmly tightened?

5 Wiring

⚠️ WARNING
Danger! Electric voltage!
• The entire connection of the device must take place while the device is de-energized.

Only certified devices may be connected in the hazardous area
• Observe corresponding notes and wiring diagrams in the CSA-control drawing supplement to these Operating Instructions. If you have any questions, please do not hesitate to contact AutomationDirect.com 1-800-633-0405.

NOTICE
SELV/Class 2 device
• The device may only be powered by a power unit with an energy-limited circuit in accordance with IEC 61010-1: ‘SELV or Class 2 circuit’.

Device destroyed if current too high
• Do not operate the device at a voltage source without a current limiter. Instead, operate the device only in the current loop with a transmitter.

Panel housing (LPM1-A-PNL): The terminals are located on the rear of the housing.

Field housing (LPM1-A-ENC and LPM1-A-HAZ): The terminals are located inside the housing. The device has two M16 cable entries. The housing must be opened for wiring purposes.
Operation of the spring terminals

1. When using rigid cables with a ferrule, just plug the cable into the terminal. No tools required. With flexible wires the spring mechanism of the terminal must be operated as shown in step 2.

2. In order to loosen the cable, push the spring mechanism in completely using a screwdriver or other suitable tool and pull out the cable.

5.1 Quick wiring guide

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Positive connection, current measurement</td>
</tr>
<tr>
<td>-</td>
<td>Negative connection, current measurement (without backlighting)</td>
</tr>
<tr>
<td>LED</td>
<td>Negative connection, current measurement (with backlighting)</td>
</tr>
<tr>
<td>□</td>
<td>Auxiliary terminals (electrically connected internally)</td>
</tr>
</tbody>
</table>
| ⊥ | Functional grounding:
 - Panel-mounted device:
 Terminal on the rear of the housing
 - Field device:
 Terminal in the housing |
Connection without backlighting | Connection with backlighting
---|---
Connection with transmitter power supply and transmitter (sinking)

<table>
<thead>
<tr>
<th>LPM1 Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

1 Transmitter power supply
2 4 to 20 mA transmitter

<table>
<thead>
<tr>
<th>LPM1 Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

1 Transmitter power supply
2 4 to 20 mA transmitter

Connection with transmitter power supply and transmitter (sourcing)

<table>
<thead>
<tr>
<th>LPM1 Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

1 Transmitter power supply
2 4 to 20 mA transmitter

<table>
<thead>
<tr>
<th>LPM1 Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

1 Transmitter power supply
2 4 to 20 mA transmitter

Connection with transmitter power supply and transmitter using the auxiliary terminal (sinking)

<table>
<thead>
<tr>
<th>LPM1 Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

1 Transmitter power supply
2 4 to 20 mA transmitter

<table>
<thead>
<tr>
<th>LPM1 Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

1 Transmitter power supply
2 4 to 20 mA transmitter

Connection with transmitter power supply and transmitter using the auxiliary terminal (sourcing)

<table>
<thead>
<tr>
<th>LPM1 Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

1 Transmitter power supply
2 4 to 20 mA transmitter

<table>
<thead>
<tr>
<th>LPM1 Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

1 Transmitter power supply
2 4 to 20 mA transmitter

Connection without transmitter power supply directly in the 4 to 20 mA circuit

<table>
<thead>
<tr>
<th>LPM1 Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

2 4 to 20 mA current source

<table>
<thead>
<tr>
<th>LPM1 Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

2 4 to 20 mA current source

Note: Always refer to the CSA control drawing (LPM1-A-HAZ-DWG) when installing a LPM1-A-HAZ in a hazardous location.
5.2 Inserting the cable, field housing

Inserting the cable, field housing, connection without transmitter power supply (example)
1. Release the housing screws
2. Open the housing
3. Open the cable gland (M16 Cable Glands, LPM1-A-ENC sold separately, LPM1-A-HAZ included with meter) and insert the cable
4. Connect the cable including functional grounding and close the cable gland
5.3 Connecting to functional grounding

5.3.1 Panel-mounted device (LPM1-A-PNL)
For EMC reasons, the functional grounding should always be connected.

Functional grounding terminal (1) on panel-mounted LPM1-A-PNL

5.3.2 Field device (LPM1-A-ENC and LPM1-A-HAZ)
For EMC reasons, the functional grounding should always be connected. When used in a hazardous area (LPM1-A-HAZ with CSA approval), the connection is obligatory and the field housing must be grounded via a grounding screw fitted on the outside of the housing.

Functional grounding terminal in field housing
5.4 Degree of protection

5.4.1 Field housing (LPM1-A-ENC and LPM1-A-HAZ)
The devices meet all the requirements of IP67. It is absolutely essential to comply with the following points to ensure this protection is guaranteed after mounting or servicing the device:

- The housing seal must be clean and undamaged when inserted into the groove. The seal must be cleaned, dried or replaced if necessary.
- The cables used for connection must be of the specified outside diameter (e.g. M16 x 1.5, cable diameter 5 to 10 mm (0.2 to 0.39 in)).
- Mount the measuring device in such a way that the cable entries point downwards.
- Fill unused cable entries with plugs.
- The housing cover and the cable entries must be firmly tightened.

5.4.2 Panel housing (LPM1-A-PNL)
The front of the device meets the requirements of IP65. It is absolutely essential to comply with the following points to ensure this protection is guaranteed after mounting or servicing the device:

- The seal between the front of the housing and the panel must be clean and undamaged. The seal must be cleaned, dried or replaced if necessary.
- The set screws of the panel mounting clips must be firmly tightened.
5.5 Post-connection check

<table>
<thead>
<tr>
<th>Device condition and specifications</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are cables or the device damaged?</td>
<td>Visual inspection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical connection</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the supply current match the specifications on the nameplate?</td>
<td>-</td>
</tr>
<tr>
<td>Are the cables, incl. functional grounding, connected correctly and strain-relieved?</td>
<td>-</td>
</tr>
<tr>
<td>Field housing (LPM1-A-ENC and LPM1-A-HAZ): Are the cable glands securely closed?</td>
<td>-</td>
</tr>
</tbody>
</table>

6 Operation

![Process display unit diagram]

Display and operating elements of the process display unit

1. Symbol: operating menu disabled
2. Symbol: error
3. Symbol: warning
4. Operating keys “-”, “+”, “E”
5. 14-segment display for unit/TAG
6. Bar graph with indicators for under range and over range
7. 5-digit 7-segment display for measured value, digit height 17 mm (0.67 in)

The device is operated using three operating keys on the front of the housing. The device setup can be disabled with a 4-digit user code. If the setup is disabled, a padlock symbol appears on the display when an operating parameter is selected.
6.1 Operating functions

The operating functions of the process display unit are divided into the following menus. The individual parameters and settings are described in the “Commissioning” section.

If the operating menu is disabled by means of a user code, the individual menus and parameters can be displayed but not changed. To change a parameter, the user code must be entered. As the display unit can only display digits in the 7-segment display and not alphanumeric characters, the procedure for number parameters is different to that for text parameters.

If the operating position contains only numbers as parameters, the operating position is displayed in the 14-segment display and the configured parameter is displayed in the 7-segment display. To edit, press the ‘E’-button followed by the user code.

If the operating position contains text parameters, only the operating position is initially displayed in the 14-segment display. If the ‘E’ button is pressed again, the configured parameter is displayed in the 14-segment display. To edit, press the ‘+’ button followed by the user code.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup (SETUP)</td>
<td>Basic device settings</td>
</tr>
<tr>
<td>Diagnostics (DIAG)</td>
<td>Device information, display of error messages</td>
</tr>
<tr>
<td>Expert (EXPT)</td>
<td>Expert settings for the device setup</td>
</tr>
<tr>
<td></td>
<td>The Expert menu is protected from editing by an access code (default 0000).</td>
</tr>
</tbody>
</table>
7 Commissioning

7.1 Post-installation check and switching on the device
Perform the final checks before commissioning the device:
• Checklist for “post-installation check”
• Checklist for “post-connection check”
The device starts after being connected to the 4 to 20 mA circuit. The firmware version appears on the display during the start-up phase.
When the device is being commissioned for the first time, program the setup in accordance with the descriptions in the Operating Instructions.
If you are commissioning a device that is already configured or preset, the device immediately starts measuring the current as defined in the settings.

Remove the protective film from the display as this would otherwise affect the readability of the display.

7.2 Operating matrix

<table>
<thead>
<tr>
<th>Setup menu (SETUP)</th>
<th>Parameters</th>
<th>Values</th>
<th>visible at</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECIM</td>
<td>0 DEC</td>
<td></td>
<td>Number of decimal places for display</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 DEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 DEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 DEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 DEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SC__4</td>
<td>Numerical value</td>
<td>5-digit value (number of decimal places as configured under DECIM) for scaling the measured value at 4 mA Example: SC__4 = 0.0 displays 0.0 at 4 mA measuring current The unit selected under UNIT is used to display the value.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>–19 999 to 99 999</td>
<td>Default: 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SC_20</td>
<td>Numerical value</td>
<td>5-digit value (number of decimal places as configured under DECIM) for scaling the measured value at 20 mA Example: SC_20 = 100.0 displays 100.0 at 20 mA measuring current The unit selected under UNIT is used to display the value.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>–19 999 to 99 999</td>
<td>Default: 100.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT</td>
<td>%</td>
<td></td>
<td>Use this function to select the unit for displaying the value. If "USER" is selected, a user-defined unit can be entered in the TEXT parameter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEXT</td>
<td>Customized text, 5-digit</td>
<td>User-defined unit, only visible if the "USER" option has been selected under UNIT.</td>
<td></td>
</tr>
</tbody>
</table>
Diagnostics menu (DIAG)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERR</td>
<td>Read only</td>
<td>The current diagnostic message appears on the display. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.</td>
</tr>
<tr>
<td>LERR</td>
<td>Read only</td>
<td>The last diagnostic message with the highest priority appears on the display.</td>
</tr>
<tr>
<td>FWVER</td>
<td>Read only</td>
<td>The firmware version appears on the display.</td>
</tr>
</tbody>
</table>
Operating Instructions - ProSense LPM1 Series Meter

Expert menu (EXPRT); a code must be entered

In addition to all the parameters in the Setup menu, the Expert menu also contains the parameters described in this table. If you call up the Expert menu, you will be asked to enter the user code (UCODE, default: 0000).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>visible at</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| UCODE | Numerical value 0000 to 9999
Default: 0000 | | 4-digit user code
With the user code it is possible to protect the device setup from unauthorized modifications.
If the setup is disabled, a padlock symbol appears on the display when an operating parameter is selected.
The user code is not active with the default setting "0000". This means that setup parameters can be changed without entering the code. The code must always be entered for the Expert menu, even for the default setting. |
| FRSET | NO | | Resets the device setup. The values are reset to the preset values for preconfigured devices, and to the default values for all other devices. Select "YES" and press "E" by way of confirmation to reset the device. |
| INPUT | | | The following parameters are available in addition to the parameters from the Setup menu. |
| CURV | LINAR | | Use this to select the calculation function for the process value
LINAR (scaling with SC_4 and SC_20):
Process value = (mA value - 4)/16 * (SC_20 - SC_4) + SC_4 + OFFST
SQRT (square root extraction and scaling):
Process value = Square root((mA value - 4)/16) * (SC_20 - SC_4) + SC_4 + OFFST
Negative values when calculating the square root are set to 0.
Example for SQRT:
- mA value = 8.0
- SC_4 = 0.0
- SC_20 = 100.0
- OFFST = 0.0
Display value = 50.0 |
| NAMUR | NO | | Use this function to define the error limits in accordance with standard NAMUR NE 43 |
| RNGLO | Numerical value | NAMUR = NO | Lower range limit. An error message is displayed if the measured current falls below this limit. |
| RNGHI | Numerical value | NAMUR = NO | Upper range limit. An error message is displayed if the measured current exceeds this limit. |
| OFFST | Numerical value -19 999 to 99 999 | | Use this function to enter an offset value to display the measured value. |
8 Troubleshooting

8.1 Error limits as per NAMUR NE 43
The device can be configured for error limits as per NAMUR NE 43. The device displays an error message if a value is outside these limits.

<table>
<thead>
<tr>
<th>Current value</th>
<th>Error</th>
<th>Diagnostic code</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 3.6 \text{ mA})</td>
<td>Under range</td>
<td>F100</td>
</tr>
<tr>
<td>(3.6 \text{ mA} < x \leq 3.8 \text{ mA})</td>
<td>Unpermitted measured value</td>
<td>S901</td>
</tr>
<tr>
<td>(20.5 \text{ mA} \leq x < 21.0 \text{ mA})</td>
<td>Unpermitted measured value</td>
<td>S902</td>
</tr>
<tr>
<td>(> 21.0 \text{ mA})</td>
<td>Over range</td>
<td>F100</td>
</tr>
</tbody>
</table>

8.2 Diagnostic messages
If several errors are pending simultaneously, the device always displays the error with the highest priority.

1 = Highest priority

<table>
<thead>
<tr>
<th>Diagnostic number</th>
<th>Short text</th>
<th>Corrective measure</th>
<th>Diagnostic behavior</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Diagnostics for the sensor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| F100 | Sensor error | • Check electrical wiring
• Check sensor
• Check sensor settings | Alarm | 6 |
<p>| S901 | Input signal too small | • Check transmitter output | Warning | 4 |</p>
<table>
<thead>
<tr>
<th>Diagnostic number</th>
<th>Short text</th>
<th>Corrective measure</th>
<th>Diagnostic behavior</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>S902</td>
<td>Input signal too large</td>
<td>Check transmitter for incorrect configuration</td>
<td>Warning</td>
<td>5</td>
</tr>
</tbody>
</table>

Diagnostics for the electronics

<table>
<thead>
<tr>
<th>Diagnosis number</th>
<th>Description</th>
<th>Corrective measure</th>
<th>Diagnostic behavior</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>F261</td>
<td>Electronics module</td>
<td>Replace display</td>
<td>Alarm</td>
<td>1</td>
</tr>
<tr>
<td>F283</td>
<td>Memory content</td>
<td>• Restart device</td>
<td>Alarm</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reset device</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reset display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F431</td>
<td>Factory calibration</td>
<td>Replace display</td>
<td>Alarm</td>
<td>3</td>
</tr>
</tbody>
</table>

Diagnostics for the configuration

<table>
<thead>
<tr>
<th>Diagnosis number</th>
<th>Description</th>
<th>Corrective measure</th>
<th>Diagnostic behavior</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>M561</td>
<td>Display overshoot</td>
<td>Check scaling</td>
<td>Warning</td>
<td>7</td>
</tr>
</tbody>
</table>

9 Maintenance

No special maintenance work is required on the device.

10 Disposal

The device contains electronic components and must therefore be disposed of as electronic waste. Comply with local disposal regulations.

11 Mounting Kit

LPM1-BKT1 Mounting kit for wall/pipe mounting (sold separately)

Dimensions of mounting bracket, engineering unit mm (in)
12 Technical data

12.1 Input

<table>
<thead>
<tr>
<th>Voltage drop</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Backlight</td>
<td>≤ 1.0 V</td>
</tr>
<tr>
<td>Backlight Enabled</td>
<td>Additional 2.9 V</td>
</tr>
</tbody>
</table>

12.1.1 Measured variable
The 4 to 20 mA current signal input variable.

12.1.2 Measuring range
4 to 20 mA (scalable, reverse polarity protection) Max. input current 200 mA

12.2 Power supply

12.2.1 Supply voltage
The display unit is loop-powered and does not require any external power supply. The voltage drop is ≤1 V at 4 to 20 mA and an additional 2.9 V if display lighting is used.

12.3 Performance characteristics

12.3.1 Reference operating conditions
Reference temperature 25 °C ±5 °C (77 °F ±9 °F)
Humidity 20 to 60% relative humidity

12.3.2 Maximum measured error

<table>
<thead>
<tr>
<th>Input</th>
<th>Range</th>
<th>Measured error of measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>4 to 20 mA</td>
<td>±0.1 %</td>
</tr>
<tr>
<td></td>
<td>Over range up to 22 mA</td>
<td></td>
</tr>
</tbody>
</table>
12.3.3 Resolution
Signal resolution > 13 bit

12.3.4 Influence of ambient temperature
< 0.02 %/K (0.01 %/°F) of measuring range

12.3.5 Warm-up period
10 minutes

12.4 Installation

12.4.1 Mounting location
Panel housing (LPM1-A-PNL)
The device is designed for use in a panel.
Required panel cutout 45x92 mm (1.77x3.62 in)
Field housing (LPM1-A-ENC, LPM1-A-HAZ)
The field housing version is designed for use in the field. The unit is mounted directly on a wall, or on a pipe with a diameter of up to 2 inches with the aid of an optional mounting bracket (LPM1-BKT1).

12.4.2 Orientation
Panel housing
The orientation is horizontal.
Field housing
The device must be mounted in such a way that the cable entries point downwards.

12.5 Environment

12.5.1 Ambient temperature range
–40 to 60 °C (–40 to 140 °F)

⚠️ At temperatures below –25 °C (–13 °F) the readability of the display can no longer be guaranteed.
12.5.2 Storage temperature
–40 to 85 °C (–40 to 185 °F)

12.5.3 Climate class
IEC 60654-1, Class B2

12.5.4 Altitude
Up to 5,000 m (16,400 ft) above MSL in accordance with IEC61010-1

12.5.5 Degree of protection
As per IEC60529:
Panel housing
IP65 at front, IP20 at rear
Field housing
IP67, NEMA4x (aluminum housing)

12.5.6 Electromagnetic compatibility
• Interference immunity:
 As per IEC61326 (Industrial Environments) / NAMUR NE 21 Maximum measured error < 1 % of MR
• Interference emission:
 As per IEC61326, Class B

12.5.7 Electrical safety
Class III, overvoltage protection category II, pollution degree 2

12.5.8 Certifications
• cULus Listed, E311366 (LPM1-A-PNL and LPM1-A-ENC only):
 UL 61010-1
 UL 61010-2-201
 UL 50 / UL 50E
• cCSAus, 601711 (LPM1-A-HAZ only):
 Intrinsically Safe Entity - For Hazardous Locations
 Ex ia IIC T6 Ga
AEx ia IIC T6 Ga
Class I, Division 1, Groups A, B, C & D
Intrinsically Safe and Non-Incendive Systems - For Hazardous Locations
Class I, Division 2, Groups A, B, C and D

• CE

12.6 Mechanical construction

12.6.1 Design, dimensions
Panel-mount housing (LPM1-A-PNL)

Required panel cutout 45x92 mm (1.77x3.62 in), max. panel thickness 13 mm (0.51 in).
Field housing (LPM1-A-ENC, LPM1-A-HAZ)

LPM1-A-ENC: M16 cable glands sold separately
LPM1-A-HAZ: M16 cable glands included (M16 x 1.5, cable diameter 5 to 10 mm (0.2 to 0.39 in))

12.6.2 Weight
Panel-mount housing
115 g (0.25 lb.)
Field housing
520 g (1.15 lb)

12.6.3 Materials
Panel-mount housing
Front: Aluminum
Rear panel: Polycarbonate PC

Field housing
Aluminum