Operating instructions
Magnetic-inductive flow meter
FMM150-1001
FMM200-1001

Scan or Click the above QR Code or go to https://www.automationdirect.com/VID-FL-0004 for a configuration video with live examples.

Scan or Click the above QR Code or go to https://www.automationdirect.com/VID-FL-0005 for a parameter explanation video with live examples.

Scan or Click the above QR Code or go to https://www.automationdirect.com/VID-FL-0006 for an explanation of Magnetic Inductive Flow Meters.
Contents

1 Preliminary note ... 5
 1.1 Symbols used ... 5
 1.2 Warning signs used ... 5

2 Safety instructions .. 5

3 Functions and features ... 6

4 Function .. 6
 4.1 Measuring principle for flow rate monitoring ... 6
 4.2 Processing of the measured signals .. 7
 4.3 Flow rate monitoring .. 8
 4.3.1 Flow rate ... 8
 4.3.2 Direction of flow ... 8
 4.4 Volumetric totalizer monitoring ... 8
 4.4.1 Volumetric totalizer monitoring with pulse output 9
 4.4.2 Volumetric totalizer monitoring with preset counter 9
 4.5 Temperature monitoring ... 10
 4.6 Empty pipe detection ... 10
 4.7 Flow rate or temperature monitoring / switching function 10
 4.7.1 Hysteresis function ... 11
 4.7.2 Window function .. 11
 4.8 Flow rate or temperature monitoring / analog function ... 12
 4.8.1 Current output .. 12
 4.8.2 Voltage output .. 13
 4.9 Flow rate monitoring / frequency output ... 14
 4.10 Start-up delay ... 14
 4.11 Low flow cut-off (LFC) ... 16
 4.12 Simulation ... 16

5 Installation ... 17
 5.1 Recommended installation position .. 17
 5.2 Not recommended installation position .. 19
 5.3 Grounding ... 20

6 Electrical connection .. 20

7 Operating and display elements .. 22

8 Menu ... 23
10.5.3 Changing the direction of the flow rate measurement ... 36
10.5.4 Setting the output logic ... 36
10.5.5 Setting the start-up delay .. 36
10.5.6 Setting the measured value damping .. 36
10.5.7 Setting the error behavior of the outputs ... 37
10.5.8 Configuring the empty pipe detection as diagnostic output ... 37
10.5.9 Activating / deactivating empty pipe detection .. 37
10.5.10 Time-delay empty pipe detection ... 37
10.5.11 Setting of the empty pipe detection ... 38
10.5.12 Setting the counting method of the totalizer ... 38
10.5.13 Setting the low flow cut-off ... 38
10.6 Service functions ... 38
10.6.1 Reading the min/max values for the flow rate ... 38
10.6.2 Reading the min/max values for the temperature ... 38
10.6.3 Simulation menu ... 39
10.6.4 Resetting all parameters to factory setting ... 39
11 Operation ... 40
11.1 Reading the process value ... 40
11.2 Reading the parameter value ... 41
11.3 Error indications .. 41
12 Technical data .. 42
13 Factory setting .. 42
1 Preliminary note
1.1 Symbols used
► Instructions
> Reaction, result
[…] Designation of pushbuttons, buttons or indications
→ Cross-reference
⚠ Important note
Non-compliance can result in malfunction or interference.
ℹ Information
Supplementary note.

1.2 Warning signs used

⚠ CAUTION
Warning of personal injury. Slight reversible injuries may result.

2 Safety instructions
• Please read this document prior to set-up of the unit. Ensure that the product is suitable for your application without any restrictions.
• If the operating instructions or the technical data are not adhered to, personal injury and/or damage to property can occur.
• Improper or non-intended use may lead to malfunctions of the unit or to unwanted effects in your application. That is why installation, electrical connection, set-up, operation and maintenance of the unit must only be carried out by qualified personnel authorized by the machine operator.
• In order to guarantee the correct condition of the device for the operating time the device must only be used in media to which the wetted parts are sufficiently resistant (→ Technical data).
• The responsibility to determine whether the measurement devices are suitable for the respective application lies with the operator. The manufacturer assumes no liability for consequences of misuse by the operator. Improper installation and use of the devices result in a loss of the warranty claims.
• For medium temperatures above 122 °F some parts of the housing can heat up to over 149 °F. Moreover, during installation or in case of a fault (e.g. housing damage) media under high pressure or hot media can leak from the system. To avoid personal injury, take the following measures:
 ► Install the unit according to the applicable rules and regulations.
 ► Ensure that the system is free of pressure during installation.
 ► Protect the housing against contact with flammable substances and unintentional contact. To do so, equip the unit with suitable protection (e.g. protective cover).
 ► Do not press the pushbuttons manually; instead use another object (e.g. ballpoint pen).

3 Functions and features

The unit monitors liquid media.

The unit detects the 3 process categories flow rate, volumetric totalizer and medium temperature.

⚠️ Pressure Equipment Directive (PED):

The units comply with the Pressure Equipment Directive and are designed and manufactured for group 2 fluids in accordance with the sound engineering practice. Use of group 1 fluids on request.

Application area

Conductive liquids with the following properties:

- Conductivity: ≥ 20 µS/cm
- Viscosity: < 70 cST at 40 °C / 104 °F

4 Function

4.1 Measuring principle for flow rate monitoring

The magnetic-inductive measuring principle means that a magnetic field is generated in the measuring pipe via current-carrying coils. When a conductive medium flows through the measuring pipe, the ions therein are diverted perpendicularly to the magnetic field. Positive and negative charge carriers flow in opposite directions. The voltage induced is measured by two electrodes that are in contact with the medium. This signal voltage is directly proportional to the average flow velocity. The flow rate is derived from the inside pipe diameter.
Both electrodes must be wetted by the medium. Otherwise the signal \[\text{SEnS}\] for empty pipe is provided, if empty pipe detection is enabled.

4.2 Processing of the measured signals

The unit displays the current process values. It generates 2 output signals according to the parameter setting.

OUT1: 5 selection options
- flow rate switch
- or flow rate (frequency)
- or volumetric totalizer pulse
- or volumetric totalizer preset switch
- or empty pipe detection switch

Parameter setting

\[\text{OUT2: 6 selection options}\]

- flow rate switch
- or temperature switch
- or analog flow rate
- or analog temperature
- or volumetric totalizer reset (input)
- or empty pipe detection switch

Parameter setting
4.3 Flow rate monitoring

4.3.1 Flow rate

The signals for measuring the flow rate can be provided as follows:

1. Two switching signals for flow rate limit values on output 1 and output 2. On the switching functions → 4.7.

2. A frequency signal (10 Hz...10 kHz) on output 1. On the frequency functions → 4.9.

3. An analog signal (4...20 mA or 0...10 V) on output 2. On the analog functions → 4.8.

4.3.2 Direction of flow

In addition to the flow rate, the unit also detects the flow direction. An arrow on the unit indicates the positive flow direction.

The flow direction can be inversed (→ 10.5.3).

Use the supplied label to mark the changed flow direction.

|
 Direction of flow in accordance with "flow direction"
 > process value and display positive.
 Direction of flow against the “flow direction”
 > process value and display negative. |

Only positive process values are processed for the signal output (limit values and analog values for flow rate).

4.4 Volumetric totalizer monitoring

The unit has an internal mass flow meter which continuously totals the flow rate. The sum corresponds to the current consumed quantity since the last reset.

- The volumetric totalizer meter takes account of the flow direction for totalization.
 - Flow according to the marked flow direction (arrow "flow direction"): meter adds.
 - Flow against the marked flow direction: meter subtracts (→ 10.5.11).
 - Meter pulses are only provided as the sum increases. After subtraction (consumed quantity decreases), the pulses are only provided again when the consumed quantity has exceeded the previous maximum value.
$V = \text{flow volume, } \text{Imp} = \text{output pulses}$

- The current meter reading can be displayed (→ 11.1 Reading the process value).

- In addition the value before the last reset is stored. This value can also be displayed (→ 11.1 Reading the process value).

 - The meter saves the totalled consumed quantity every 10 minutes. In the event of a power failure this value is retained as the current meter reading. If a time-controlled reset is set, the elapsed time of the set reset interval is also stored. So the possible data loss can be maximum 10 minutes.

There are different ways to reset the meter
→ 10.3.4 Manual counter reset
→ 10.3.5 Time-controlled counter-reset
→ 10.3.7 Configure counter reset using an external signal

4.4.1 Volumetric totalizer monitoring with pulse output
Output 1 indicates a counting pulse when the set flow volume has been reached (→ 10.3.1).

4.4.2 Volumetric totalizer monitoring with preset counter
Output 1 switches when the set flow volume has been reached (→ 10.3.2). 2 types of monitoring are possible:

1. Time-dependent volume monitoring (→ 10.3.5 Time-controlled counter-reset).
 - If the volume x is reached during t, output 1 switches and remains switched until the meter is reset.
 - If the volume x is not reached during the time t, the meter is automatically reset and counting starts again; output 1 does not switch.
2. Volume monitoring not time-dependent (→ 10.3.6 Deactivation of the counter reset).
 - If the volume x is reached, output 1 switches and remains switched until the meter is reset.

4.5 Temperature monitoring
The following signals are provided for temperature monitoring:
- A switching signal for temperature limit values on output 2. On the switching functions → 4.7.
- An analog signal proportional to the temperature (4...20 mA or 0...10 V) on output 2. On the analog functions → 4.8.

4.6 Empty pipe detection
The unit detects when the two electrodes are not wetted by the medium (→ 4.1 Measuring principle for flow rate monitoring). The empty pipe detection can be activated or deactivated (→ 10.5.9). If it is active and the pipe is empty, the unit reacts as follows:
> [SEnS] is indicated in the display.
> The flow is set to zero.
The empty pipe detection can be set as time-depending or not time depending (→ 10.5.10).

4.7 Flow rate or temperature monitoring / switching function
OUTx changes its switching state if it is above or below the set switching limits (SPx, rPx). The following switching functions can be selected:
4.7.1 Hysteresis function

![Hysteresis Diagram]

- Normally open: \([\text{OU}_x] = [\text{Hno}]\)
- Normally closed: \([\text{OU}_x] = [\text{Hnc}]\)
- First the set point \((\text{SP}_x)\) is set, then the reset point \((\text{rP}_x)\) with the requested difference.

- \(\text{SP}_x\) is adjusted \(\text{rP}_x\) is changed automatically; the difference remains constant.

Example of flow rate monitoring

\(\text{HY} = \text{hysteresis}\)

4.7.2 Window function

![Window Diagram]

- Normally open: \([\text{OU}_x] = [\text{Fno}]\)
- Normally closed: \([\text{OU}_x] = [\text{Fnc}]\)
- The width of the window can be set by means of the difference between \(\text{SP}_x\) and \(\text{rP}_x\).

- \(\text{SP}_x\) = upper value
- \(\text{rP}_x\) = lower value

Example of flow rate monitoring

\(\text{FE} = \text{window}\)

- When set to the window function the set and reset points have a fixed hysteresis of 0.25 % of the final value of the measuring range. This keeps the switching state of the output stable if the flow rate varies slightly.
4.8 Flow rate or temperature monitoring / analog function

4.8.1 Current output

![Diagram showing output characteristics]

Characteristics of the analog output according to the standard IEC 60947-5-7

1: Output current
2: Flow rate
3: Temperature
4: Display range
5: Measuring range
6: Range between analog start point and analog end point
7: The unit is in the error state (FOU = OFF).
8: The process value transmitted in an analog way is therefore below the display range.
9: Curve of the analog signal at factory setting
10: Curve of the analog signal with shifted ASP and AEP
11: The process value transmitted in an analog way is therefore above the display range.
12: The unit is in the error state (FOU = ON).

ASP = analog start point: determines at which measured value the output signal is 4 mA
AEP = analog end point: determines at which measured value the output signal is 20 mA
VMR = final value of the measuring range = 100 %

⚠️ Minimum distance between ASP and AEP = 20 % of the measuring range

In the set scaling range the output signal is between 4 and 20 mA.
4.8.2 Voltage output

Characteristics of the analog output according to the standard IEC 60947-5-7
1: Output voltage
2: Flow rate
3: Temperature
4: Display range
5: Measuring range
6: Range between analog start point and analog end point
7: The unit is in the error state (FOU = OFF) or the process value transmitted in an analog way is below the display range.
8: Curve of the analog signal at factory setting
9: Curve of the analog signal with shifted ASP and AEP
10: The process value transmitted in an analog way is therefore above the display range.
11: The unit is in the error state (FOU = ON).

ASP = analog start point: determines at which measured value the output signal is 0 V
AEP = analog end point: determines at which measured value the output signal is 10 V
VMR = final value of the measuring range = 100 %

⚠ Minimum distance between ASP and AEP = 20 % of the measuring range

In the set scaling range the output signal is between 0 and 10 V.
4.9 Flow rate monitoring / frequency output

Output curve frequency output
1: Frequency output
2: Flow rate Q
3: The unit is in the error state (FOU = OFF) or the process value transmitted in an analog way is below the display range.
4: The unit is in the error state (FOU = ON).

FrEP = configured frequency at FEP (→ 10.2.4 Setting the frequency value for flow rate)

4.10 Start-up delay

The start-up delay dST influences the switching outputs of the flow rate monitoring.

If the start-up delay is active (dST > 0), note: As soon as the flow rate exceeds the LFC (LFC = low flow cut-off → 4.11), the following processes are carried out:

> The start-up delay is activated.
> The outputs switch as programmed:
 ON for NO function, OFF for NC function.

After the start of the start-up delay there are 3 options:
1. The flow rate increases quickly and reaches the set point / good range within dST.
 > Outputs remain active.
2. The flow rate increases slowly and does not reach the set point /good range within dST.
 > Outputs are reset.

3. Flow rate falls below LFC within dST.
 > Outputs are reset at once; dST is stopped.

Example: dST for hysteresis function

<table>
<thead>
<tr>
<th>Condition</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Flow rate Q reaches LFC</td>
<td>dST starts, output becomes active</td>
</tr>
<tr>
<td>2 dST elapsed, Q reached SP</td>
<td>output remains active</td>
</tr>
<tr>
<td>3 Q below SP but above rP</td>
<td>output remains active</td>
</tr>
<tr>
<td>4 Q below rP</td>
<td>output is reset</td>
</tr>
<tr>
<td>5 Q reaches again LFC</td>
<td>dST starts, output becomes active</td>
</tr>
<tr>
<td>6 dST elapsed, Q has not reached SP</td>
<td>output is reset</td>
</tr>
<tr>
<td>7 Q reaches SP</td>
<td>output becomes active</td>
</tr>
</tbody>
</table>
Example: dST for window function

<table>
<thead>
<tr>
<th>Condition</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Flow rate Q reaches LFC</td>
<td>dST starts, output becomes active.</td>
</tr>
<tr>
<td>2 dST elapsed, Q reached good range</td>
<td>output remains active</td>
</tr>
<tr>
<td>3 Q above SP (leaves good range)</td>
<td>output is reset</td>
</tr>
<tr>
<td>4 Q again below SP</td>
<td>output becomes active again</td>
</tr>
<tr>
<td>5 Q below rP (leaves good range)</td>
<td>output is reset again</td>
</tr>
<tr>
<td>6 Q reaches again LFC</td>
<td>dST starts, output becomes active</td>
</tr>
<tr>
<td>7 dST elapsed, Q has not reached good range</td>
<td>output is reset</td>
</tr>
<tr>
<td>8 Q reaches good range</td>
<td>output becomes active</td>
</tr>
</tbody>
</table>

4.11 Low flow cut-off (LFC)
With this function small flow rates can be ignored (→ 10.5.13). Flows below the LFC value are evaluated by the sensor as standstill (Q = 0).

4.12 Simulation
With this function flow and temperature values can be simulated (→ 10.6.3). The simulation does not have any effect on the totalizer or the current flow. The outputs operate as previously set. When the simulation starts, the value of the totalizer is saved and then the simulated totalizer is set to 0. The simulated flow value then has an effect on the simulated totalizer. When the simulation is finished, the original totalizer value is restored.
During the simulation the original totalizer value remains saved without any changes even if there is a real flow.

5 Installation

⚠ Avoid deposits, accumulated gas and air in the pipe system.

5.1 Recommended installation position

Example of an optimized installation:

► Install the unit so that the measuring pipe is completely filled.
► Arrange for inlet and outlet pipe lengths. Disturbances caused by bends, valves, reductions, etc. are compensated for. It applies in particular: No shut-off and control devices are allowed directly in front of the unit.

S = disturbance; D = pipe diameter; F = flow direction
 ► Install in front of or in a rising pipe:

F = flow direction

With empty pipe detection:

- Install the unit according to figure 1, 4 or 5.

The unit can be installed independently of the orientation if the following is ensured:

- No air bubbles can form in the pipe system.
- The pipes are always completely filled.
5.2 Not recommended installation position

Avoid the following installation positions:

- Directly in front of a falling pipe.
- In a falling pipe.
- At the highest point of the pipe system.
- Directly in front of the spout of the pipe.
- On the suction side of a pump.

F = flow direction
5.3 Grounding

If installed in an ungrounded pipe system (e.g. plastic pipes), the unit must be grounded (functional earth).

Ground brackets for the M12 connector are available as accessories (→ www.automationdirect.com).

6 Electrical connection

The unit must be connected by a qualified electrician.

The national and international regulations for the installation of electrical equipment must be adhered to.

Voltage supply according to EN 50178, SELV, PELV.

► Disconnect power.

► Connect the unit as follows:

Colors to DIN EN 60947-5-6
Sample circuits:

<table>
<thead>
<tr>
<th>2 x positive switching</th>
<th>2 x negative switching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 x positive switching / 1 x analog</th>
<th>1 x negative switching / 1 x analog</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin 1</th>
<th>L+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 3</td>
<td>L-</td>
</tr>
</tbody>
</table>

Pin 4 (OUT1)
- Flow rate switch: limit values for flow rate
- Volumetric totalizer pulse: 1 pulse every time the defined volumetric total is reached.
- Volumetric totalizer preset switch
- Flow rate (frequency)
- Empty pipe detection switch

Pin 2 (OUT2/InD)
- Flow rate switch: limit values for flow rate
- Temperature switch: limit values for temperature
- Analog signal for flow rate
- Analog signal for temperature
- Empty pipe detection switch
- Volumetric totalizer reset (input)
7 Operating and display elements

1 to 8: Indicator LEDs
- LEDs 1-6 = Unit of the currently represented numerical value → 11.1 Reading the process value
- LED 7 = switching state of output OUT2 / of input InD
- LED 8 = switching status of output OUT1

9: Alphanumeric display, 4 digits
- Current flow rate (with setting [SELd] = [FLOW])
- Meter reading of the totalizer (with setting [SELd] = [TOTL])
- Current medium temperature (with setting [SELd] = [TEMP])
- Parameters and parameter values

10: [Enter] button
- Selecting the parameters
- Reading the set values
- Confirming the parameter values

Representation in → 8 Menu: ☺

11: Buttons up [▲] and down [▼]
- Selection of the parameters
- Activation of the setting functions
- Changing the parameter values
- Change of the display unit in the normal operating mode (Run mode)
- Locking / unlocking

Representation in → 8 Menu: ☼ and ◤
8 Menu

8.1 Process value display

gal = Current volumetric totalizer value since the last reset in 10^3 or 10^6 Gallon

gal* = Volumetric totalizer value before the last reset in 10^3 or 10^6 Gallon

↓ Main menu
8.2 Main menu

↑ Process value display

↓ Extended functions

* The parameters are only displayed when selected at OU1.
** The parameters are only displayed when selected at OU2.
8.2.1 Explanation main menu

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1</td>
<td>Maximum limit value for the set process value</td>
</tr>
<tr>
<td>rP1</td>
<td>Minimum limit value for the set process value</td>
</tr>
<tr>
<td>ImPS</td>
<td>Pulse value</td>
</tr>
<tr>
<td>ImPR</td>
<td>Pulse reset</td>
</tr>
<tr>
<td>FEP</td>
<td>Frequency output of the end point of the flow value</td>
</tr>
<tr>
<td>FrEP</td>
<td>Frequency output of the end point of the frequency</td>
</tr>
<tr>
<td>OU1</td>
<td>Output function for OUT1 (flow rate or volumetric totalizer)</td>
</tr>
<tr>
<td>OU2</td>
<td>Output function for OUT2 (flow rate or temperature)</td>
</tr>
<tr>
<td></td>
<td>As an alternative: configure OUT2 (Pin2) as input for external volumetric totalizer reset signal: Setting: [OU2] = [In.D]</td>
</tr>
<tr>
<td>Hno</td>
<td>Hysteresis normally open</td>
</tr>
<tr>
<td>Hnc</td>
<td>Hysteresis normally closed</td>
</tr>
<tr>
<td>Fno</td>
<td>Window normally open</td>
</tr>
<tr>
<td>Fnc</td>
<td>Window normally closed</td>
</tr>
<tr>
<td>ImP</td>
<td>Pulse output</td>
</tr>
<tr>
<td>FRQ</td>
<td>Frequency output</td>
</tr>
<tr>
<td>dOU</td>
<td>Diagnostic output</td>
</tr>
<tr>
<td>I</td>
<td>Current output</td>
</tr>
<tr>
<td>U</td>
<td>Voltage output</td>
</tr>
<tr>
<td>In.D</td>
<td>External input</td>
</tr>
<tr>
<td>ASP2</td>
<td>Analog start value for the set process value</td>
</tr>
<tr>
<td>AEP2</td>
<td>Analog end value for the set process value</td>
</tr>
<tr>
<td>SP2</td>
<td>Maximum limit value for the set process value</td>
</tr>
<tr>
<td>rP2</td>
<td>Minimum limit value for the set process value</td>
</tr>
<tr>
<td>DIn2</td>
<td>Configuration of the input (Pin2) for counter reset</td>
</tr>
<tr>
<td>EF</td>
<td>Extended functions / opening of menu level 2</td>
</tr>
</tbody>
</table>
8.3 Extended functions – Basic settings

↑ Main menu

8.1

* The parameters are only displayed when selected at OU1.
** The parameters are only displayed when selected at OU2.
8.3.1 Explanation extended functions (EF)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rES</td>
<td>Restore the factory setting</td>
</tr>
<tr>
<td>rTo</td>
<td>Counter reset: manual reset / time-controlled reset</td>
</tr>
<tr>
<td>CFG</td>
<td>Submenu basic settings</td>
</tr>
<tr>
<td>MEM</td>
<td>Submenu min/max memory</td>
</tr>
<tr>
<td>EPD</td>
<td>Submenu empty pipe</td>
</tr>
<tr>
<td>SIM</td>
<td>Submenu simulation</td>
</tr>
</tbody>
</table>

8.3.2 Submenu basic settings (CFG)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FOU1</td>
<td>Behavior of output 1 in case of an error</td>
</tr>
<tr>
<td>FOU2</td>
<td>Behavior of output 2 in case of an error</td>
</tr>
<tr>
<td>dST</td>
<td>Start-up delay of flow rate monitoring</td>
</tr>
<tr>
<td>P-n</td>
<td>Output logic: pnp / npn</td>
</tr>
<tr>
<td>dAP</td>
<td>Measured value damping / damping constant in seconds</td>
</tr>
<tr>
<td>diS</td>
<td>Update rate and orientation of the display</td>
</tr>
<tr>
<td>Uni</td>
<td>Standard unit of measurement for flow rate: gallons/minute or gallons/hour</td>
</tr>
<tr>
<td>SELd</td>
<td>Standard measuring unit of the display: flow rate value / medium temperature / meter reading</td>
</tr>
<tr>
<td>SEL2</td>
<td>Standard unit of measurement for evaluation via OUT2</td>
</tr>
<tr>
<td>LFC</td>
<td>Low flow cut-off</td>
</tr>
<tr>
<td>FPro</td>
<td>Totalizer: behavior with negative flow</td>
</tr>
<tr>
<td>Fdir</td>
<td>Direction of flow</td>
</tr>
</tbody>
</table>
8.4 Extended functions – Min/max memory – Empty pipe – Simulation

* Parameters are only displayed for the selection EP.On = On.
8.4.1 Explanation extended functions (EF)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rES</td>
<td>Restore the factory setting</td>
</tr>
<tr>
<td>rTo</td>
<td>Counter reset: manual reset / time-controlled reset</td>
</tr>
<tr>
<td>CFG</td>
<td>Submenu basic settings</td>
</tr>
<tr>
<td>MEM</td>
<td>Submenu min/max memory</td>
</tr>
<tr>
<td>EPD</td>
<td>Submenu empty pipe</td>
</tr>
<tr>
<td>SIM</td>
<td>Submenu simulation</td>
</tr>
</tbody>
</table>

8.4.2 Submenu min/max memory (MEM)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI.F</td>
<td>Max. value flow</td>
</tr>
<tr>
<td>LO.F</td>
<td>Min. value flow</td>
</tr>
<tr>
<td>HI.T</td>
<td>Max. value temperature</td>
</tr>
<tr>
<td>LO.T</td>
<td>Min. value temperature</td>
</tr>
</tbody>
</table>

8.4.3 Submenu empty pipe (EPD)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP.On</td>
<td>Empty pipe detection on / off</td>
</tr>
<tr>
<td>dEP.E.</td>
<td>Delay time empty signal</td>
</tr>
<tr>
<td>dEP.F</td>
<td>Delay time full signal</td>
</tr>
<tr>
<td>EP.Pr</td>
<td>Current measured value of empty pipe detection</td>
</tr>
<tr>
<td>EP.SP</td>
<td>Switch point of empty pipe detection</td>
</tr>
</tbody>
</table>

8.4.4 Submenu simulation (SIM)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.FLW</td>
<td>Simulation flow value</td>
</tr>
<tr>
<td>S.TMP</td>
<td>Simulation temperature value</td>
</tr>
<tr>
<td>S.TIM</td>
<td>Simulation time</td>
</tr>
<tr>
<td>S.ON</td>
<td>Simulation start</td>
</tr>
</tbody>
</table>
9 Set-up
After power on and completion of the power-on delay time (approx. 5 seconds) the unit is in the normal operating mode. It carries out its measurement and evaluation functions and generates output signals according to the set parameters.

- During the power-on delay time the outputs are switched as programmed:
 - ON with normally open function (Hno / Fno)
 - OFF with normally closed function (Hnc / Fnc).
- If output 2 is configured as analog output, the output signal is at 20 mA (current output) or 10 V (voltage output).

10 Parameter setting
Parameters can be set before installation and set-up of the unit or during operation.

⚠️ If you change parameters during operation, this will influence the function.
 ➤ Ensure that there will be no malfunctions in your plant.

During parameter setting the unit remains in the operating mode. It continues to monitor with the existing parameter until the parameter setting has been completed.

⚠️ CAUTION
For medium temperatures above 122 °F some parts of the housing can heat up to over 149 °F.
 ➤ Do not press the pushbuttons manually. instead use another object (e.g. ballpoint pen).
10.1 Parameter setting in general

<table>
<thead>
<tr>
<th>Select the parameter</th>
<th>![Select the parameter diagram]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Press [▲] or [▼] until the requested parameter is displayed.</td>
<td></td>
</tr>
</tbody>
</table>

Changing the parameter value

<table>
<thead>
<tr>
<th>![Changing the parameter value diagram]</th>
</tr>
</thead>
<tbody>
<tr>
<td>> The currently set value is displayed.</td>
</tr>
<tr>
<td>4. Keep [▲] or [▼] pressed for 1 s</td>
</tr>
<tr>
<td>> Display flashes first, then permanent.</td>
</tr>
<tr>
<td>5. Change value by pressing [▲] or [▼].</td>
</tr>
</tbody>
</table>

- [▲] or [▼] pressed.
 - Faster cycle of the numerical values.

Confirm the parameter value

<table>
<thead>
<tr>
<th>![Confirm the parameter value diagram]</th>
</tr>
</thead>
<tbody>
<tr>
<td>> The parameter is displayed again. The new setting value is saved.</td>
</tr>
</tbody>
</table>

Finish parameter setting and change to the process value display:

- Wait for 30 seconds
- Change from the submenu to the main menu, from the main menu to the process value display with [▲] or [▼].
10.1.1 Switching between the menu levels

<table>
<thead>
<tr>
<th>Change to the submenu</th>
<th>Switching to the next submenu via the parameters [EF], [CFG], [MEM], [EPD] or [SIM].</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>► Select a submenu with [▲] or [▼] and switch to the submenu by pressing [Enter].</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Back to the process value display</th>
<th>► Wait for 30 seconds or</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>► Change from the submenu to the main menu, from the main menu to the process value display with [▲] or [▼].</td>
</tr>
</tbody>
</table>

10.1.2 Locking / unlocking

The unit can be locked electronically to prevent unintentional settings. Setting at the factory: not locked.

<table>
<thead>
<tr>
<th>Locking</th>
<th>► Make sure that the unit is in the normal operating mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>► Press [▲] and [▼] simultaneously for 10 s.</td>
</tr>
<tr>
<td></td>
<td>> [Loc] is displayed.</td>
</tr>
<tr>
<td></td>
<td>► During operation: [LOC] is briefly displayed if you try to change parameter values.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unlocking</th>
<th>► Press [▲] and [▼] simultaneously for 10 s.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> [uLoc] is displayed.</td>
</tr>
</tbody>
</table>

10.1.3 Timeout

If no button is pressed for 30 s during parameter setting, the unit returns to the operating mode with unchanged parameter.

10.2 Settings for volumetric totalizer monitoring

10.2.1 Settings for limit value monitoring with OUT1

► Select [OU1] and set the switching function:
 - [Hno] = hysteresis function/NO,
 - [Hnc] = hysteresis function/NC,
 - [Fno] = window function/NO,
 - [Fnc] = window function/NC.

► Select [SP1] and set the value at which the output switches.

► Select [rP1] and set the value at which the output switches off.
10.2.2 Settings for limit value monitoring with OUT2

► Select [SEL2] and set [FLOW].
► Select [OU2] and set the switching function.
 - [Hno] = hysteresis function/NO,
 - [Hnc] = hysteresis function/NC,
 - [Fno] = window function/NO,
 - [Fnc] = window function/NC.
► Select [SP2] and set the value at which the output switches.
► Select [rP2] and set the value at which the output switches off.

10.2.3 Setting the analog value for flow rate

► Select [SEL2] and set [FLOW].
► Select [OU2] and set the function:
 - [I] = current signal proportional to flow rate (4…20 mA);
 - [U] = voltage signal proportional to flow rate (0…10 V).
► Select [ASP2] and set the value at which the minimum value is provided.
► Select [AEP2] and set the value at which the maximum value is provided.

10.2.4 Setting the frequency value for flow rate

► Select [OU1] and set [FRQ].
► Select [FEP] and set the flow value at which the frequency set in FrEP is provided.
► Select [FrEP] and set the frequency.

10.3 Settings for volumetric totalizer monitoring
10.3.1 Settings for volume monitoring via pulse output

► Select [OU1] and set [ImP].
► Select [ImPS] and set the volume at which 1 pulse is provided (→ 10.3.3).
► Select [ImPR] and set [YES].
> Pulse repetition is active. Output 1 provides a counting pulse each time the value set in [ImPS] is reached.
10.3.2 Settings for volumetric totalizer monitoring via the preset counter

► Select [OU1] and set [ImP].
► Select [ImPS] and set the volume at which output 1 switches (→ 10.3.3).
► Select [ImPR] and set [no].
> Pulse repetition is not active. The output switches ON if the value set in [ImPS] is reached. It remains set until the counter is reset.

10.3.3 Setting the pulse value

► Select [ImPS].
► Press [Enter] briefly.
> The currently set value is displayed.
► Keep [▲] or [▼] pressed until "cccc" is displayed.
► Press [▲] or [▼] to select the setting range.
> With each press of the pushbutton the display changes to the next setting range (decimal point shifts and / or LED changes).
► Press [Enter] to confirm the setting range.
► Press [▲] or [▼] until the requested numerical value is displayed.
► Press [Enter] briefly.

Setting ranges:

<table>
<thead>
<tr>
<th>LED*</th>
<th>Unit</th>
<th>Display</th>
<th>Value</th>
<th>Step increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>gal</td>
<td>00.02...99.98</td>
<td>0.02...99.98 gal</td>
<td>0.02 gal</td>
</tr>
<tr>
<td>3</td>
<td>gal</td>
<td>000.2...999.8</td>
<td>0.2...999.8 gal</td>
<td>0.2 gal</td>
</tr>
<tr>
<td>3 + 5</td>
<td>gal x 10³</td>
<td>0.002...9998</td>
<td>2...9998 gal</td>
<td>2 gal</td>
</tr>
<tr>
<td>3 + 5</td>
<td>gal x 10³</td>
<td>00.02...9998</td>
<td>20...99 980 gal</td>
<td>20 gal</td>
</tr>
<tr>
<td>3 + 5</td>
<td>gal x 10³</td>
<td>000.2...9998</td>
<td>200...999 800 gal</td>
<td>200 gal</td>
</tr>
<tr>
<td>3 + 6</td>
<td>gal x 10⁶</td>
<td>0.002...9998</td>
<td>2000...9 998 000 gal</td>
<td>2000 gal</td>
</tr>
<tr>
<td>3 + 6</td>
<td>gal x 10⁶</td>
<td>00.02...80.00</td>
<td>20 000...80 000 000 gal</td>
<td>20 000 gal</td>
</tr>
</tbody>
</table>

* indicator LED → 7 Operating and display elements

10.3.4 Manual counter reset

► Select [rTo] and set [rES.T].
> The counter is reset to zero.
10.3.5 Time-controlled counter-reset

- Select [rTo] and set the requested value (intervals of hours, days or weeks).
 > The counter is reset automatically with the value now set.

10.3.6 Deactivation of the counter reset

- Select [rTo] and set [OFF].
 > The meter is only reset after overflow (= factory setting).

10.3.7 Configure counter reset using an external signal

- Select [OU2] and set [InD].
- Select [DIn2] and set the reset signal:
 - [HIGH] = reset for high signal,
 - [LOW] = reset for low signal,
 - [+EDG] = reset for rising edge,
 - [-EDG] = reset for falling edge.

10.4 Settings for temperature monitoring

10.4.1 Settings for limit value monitoring with OUT2

- Select [SEL2] and set [TEMP].
- Select [OU2] and set the switching function.
 - [Hno] = hysteresis function/NO,
 - [Hnc] = hysteresis function/NC,
 - [Fno] = window function/NO,
 - [Fnc] = window function/NC.
- Select [SP2] and set the value at which the output switches.
- Select [rP2] and set the value at which the output switches off.

10.4.2 Setting the analog value for temperature

- Select [SEL2] and set [TEMP].
- Select [OU2] and set the function:
 - [I] = temperature-proportional current signal (4…20 mA);
 - [U] = temperature-proportional voltage signal (0…10 V).
- Select [ASP2] and set the value at which the minimum value is provided.
- Select [AEP2] and set the value at which the maximum value is provided.
10.5 User settings (optional)

10.5.1 Setting of the standard unit of measurement for flow rate

► Select [Uni] and set the unit of measurement: [gpm] or [gph].

The setting only has an effect on the flow rate value. The counter values (volumetric totalizer) are automatically displayed in the unit of measurement providing the highest accuracy.

10.5.2 Configuration of the standard display

► Select [SELD] and determine the standard measuring unit:
 - [FLOW] = the current flow rate value in the standard unit of measurement is displayed.
 - [TOTL] = display indicates the current meter count in gal, 10^3 gal or 10^6 gal.
 - [TEMP] = the current medium temperature in °F is displayed.

► Select [dIS] and set the update rate and orientation of the display:
 - [d1] = update of the measured values every 50 ms.
 - [d2] = update of the measured values every 200 ms.
 - [d3] = update of the measured values every 600 ms.
 - [rd1], [rd2], [rd3] = display as for d1, d2, d3; rotated by 180°.
 - [OFF] = the display is switched off in the operating mode.

10.5.3 Changing the direction of the flow rate measurement

► Select [Fdir] and set the direction of flow:
 [+] = flow in the direction of the flow arrow (= factory setting)
 [-] = flow against the flow arrow ► label over the arrow

10.5.4 Setting the output logic

► Select [P-n] and set [PnP] or [nPn].

10.5.5 Setting the start-up delay

► Select [dST] and set the numerical value in seconds.

10.5.6 Setting the measured value damping

► Select [dAP] and set the damping constant in seconds (τ value 63 %).
10.5.7 Setting the error behavior of the outputs

► Select [FOU1] and set the value:

1. Switching output:
 - [OFF] = output 1 switches OFF in case of an error.
 - [OU1] = output 1 switches irrespective of the error as defined with the parameters.

2. Frequency output:
 - [On] = 130% of FrEP
 - [OFF] = 0 Hz
 - [OU1] = continues running

► Select [FOU2] and set the value:

 - [On] = output 2 switches ON in case of an error, the analog signal goes to the upper error value.
 - [OFF] = output 2 switches OFF in case of an error, the analog signal goes to the lower error value.
 - [OU2] = output 2 switches irrespective of the error as defined with the parameters. The analog signal corresponds to the measured value.

10.5.8 Configuring the empty pipe detection as diagnostic output

► Select [OU1] or [OU2] and set [dOU].
► Select [P-n] and set [PnP] or [nPn].

The empty pipe detection is only effective if it is activated at [EP.On] → 10.5.9. When the empty pipe state is detected, the diagnostic output is inactive.

10.5.9 Activating / deactivating empty pipe detection

► Select [EP.On] and set the function:

 - [OFF] = empty pipe detection deactivated.

10.5.10 Time-delay empty pipe detection

► Select [dEP.E] and set the delay time from 0…30 s, at which the signal should be provided when the pipe is empty.
► Select [dEP.F] and set the delay time from 0…30 s, at which the signal should be provided when the pipe is full.
10.5.11 Setting of the empty pipe detection

- Select [EP.Pr] to display the current value of the empty pipe detection in percent.
- Select [EP.SP] and set the switch point of empty pipe detection.

10.5.12 Setting the counting method of the totalizer

- Select [FPro] and set the value:

 -
 - [0+] = totalling only positive flow rate values.

10.5.13 Setting the low flow cut-off

- Select [LFC] and set the limit value.

10.6 Service functions

10.6.1 Reading the min/max values for the flow rate

- Select [HI.F] or [LO.F]

 - [HI.F] = max. value, [LO.F] = min. value.

Delete memory:

- Select [HI.F] or [LO.F].
- Press [Enter] briefly.
- Keep [▲] or [▼] pressed.

 - [----] is displayed.
- Press [Enter] briefly.

It makes sense to delete the memories as soon as the unit operates under normal operating conditions for the first time.

10.6.2 Reading the min/max values for the temperature

- Select [HI.T] or [LO.T]

 - [HI.T] = max. value, [LO.T] = min. value.

Delete memory:

- Select [HI.T] or [LO.T].
- Press [Enter] briefly.
- Keep [▲] or [▼] pressed.

 - [----] is displayed.
- Press [Enter] briefly.

It makes sense to delete the memories as soon as the unit operates under normal operating conditions for the first time.
10.6.3 Simulation menu

- Select [S.FLW] and set the flow value to be simulated.
- Select [S.TMP] and set the temperature value to be simulated.
- Select [S.Tim] and set the time of the simulation in minutes.
- Select [S.On] and set the function:
 - [On]: The simulation starts. The values are simulated for the time set at [S.Tim]. [SIM] is displayed simultaneously with the process values. Cancel with [Enter].
 - [OFF]: The simulation is not active.

10.6.4 Resetting all parameters to factory setting

- Select [rES].
- Press [Enter] briefly.
- Keep [▲] or [▼] pressed.
- [----] is displayed.
- Press [Enter] briefly.

For the factory settings please refer to the end of these instructions → 13. We recommend recording your own settings in that table before carrying out a reset.
11 Operation

11.1 Reading the process value

The LEDs 1-6 signal which process value is currently displayed. The process value to be displayed as standard (temperature, flow rate or meter reading of the totalizer) can be preset → 10.5.2 Configuration of the standard display. A standard unit of measurement can be defined for the flow rate (gpm or gph → 10.5.1).

Further process values can be read in addition to the preset standard display:

► Press the buttons [▲] or [▼].

> The LED of the selected process value display is lit and the current process value is displayed.

> After 30 seconds the display changes to the standard display.

<table>
<thead>
<tr>
<th>LED</th>
<th>Process value display</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Current flow rate per minute</td>
<td>gpm</td>
</tr>
<tr>
<td>2</td>
<td>Current flow rate per hour</td>
<td>gph</td>
</tr>
<tr>
<td>3</td>
<td>Current volumetric totalizer value since the last reset</td>
<td>gal</td>
</tr>
<tr>
<td>3 + 5</td>
<td>Volumetric totalizer value before the last reset</td>
<td>gal</td>
</tr>
<tr>
<td>3 + 5</td>
<td>Current volumetric totalizer value since the last reset</td>
<td>10^3 gal</td>
</tr>
<tr>
<td>3 + 6</td>
<td>Volumetric totalizer value before the last reset</td>
<td>10^3 gal</td>
</tr>
<tr>
<td>3 + 6</td>
<td>Current volumetric totalizer value since the last reset</td>
<td>10^6 gal</td>
</tr>
<tr>
<td>3 + 6</td>
<td>Volumetric totalizer value before the last reset</td>
<td>10^6 gal</td>
</tr>
<tr>
<td>4</td>
<td>Current medium temperature</td>
<td>°F</td>
</tr>
</tbody>
</table>

LED is lit; LED flashes

* The volumetric totalizer value is automatically displayed in the unit of measurement providing the highest accuracy.
11.2 Reading the parameter value

To display the currently set parameter value, take the following steps:

Select the parameter
2. Press [▲] or [▼] until the requested parameter is displayed.

Display the parameter value
 > The currently set value is displayed for 30 s.

By pressing [Enter] briefly several times, the display switches between parameter and parameter value.

Switching to the process value display
- Wait for 30 seconds
- or
- Change from the submenu to the main menu, from the main menu to the process value display with [▲] or [▼].

11.3 Error indications

<table>
<thead>
<tr>
<th>Warning message</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SC1] Short circuit in OUT1. LED8 for OUT1 flashes (→ 7 Operating and display elements).</td>
</tr>
<tr>
<td>[SC2] Short circuit in OUT2. LED7 for OUT2 flashes (→ 7 Operating and display elements).</td>
</tr>
<tr>
<td>[SC] Short circuit in both outputs. LED7 and LED8 flash (→ 7 Operating and display elements).</td>
</tr>
<tr>
<td>[OL] Detection zone of flow rate or temperature exceeded. Measured value between 120 % and 130 % of the final value of the measuring range.</td>
</tr>
<tr>
<td>[UL] Below the detection zone of flow rate or temperature. Measured value between -120 % and -130 % of the final value of the measuring range.</td>
</tr>
</tbody>
</table>
| [Err] • Unit faulty / malfunction.
 • Measured value greater than 130 % of the final value of the measuring range.
 • Measured value lower than -130 % of the final value of the measuring range. |
- Measuring pipe not sufficiently filled.
- Medium with too low a conductivity.

[IOE.n] | Malfunctioning. The unit is faulty and must be replaced.

12 Technical data

13 Factory setting

<table>
<thead>
<tr>
<th></th>
<th>Factory setting</th>
<th>User setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1</td>
<td>20 % *</td>
<td></td>
</tr>
<tr>
<td>rP1</td>
<td>19.5 % *</td>
<td></td>
</tr>
<tr>
<td>ImPS</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>ImPR</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>OU1</td>
<td>Hno</td>
<td></td>
</tr>
<tr>
<td>OU2</td>
<td>l</td>
<td></td>
</tr>
<tr>
<td>SP2 (FLOW)</td>
<td>40 % *</td>
<td></td>
</tr>
<tr>
<td>rP2 (FLOW)</td>
<td>39.5 % *</td>
<td></td>
</tr>
<tr>
<td>SP2 (TEMP)</td>
<td>68 °F</td>
<td></td>
</tr>
<tr>
<td>rP2 (TEMP)</td>
<td>67,3 °F</td>
<td></td>
</tr>
<tr>
<td>ASP2 (FLOW)</td>
<td>0 % *</td>
<td></td>
</tr>
<tr>
<td>AEP2 (FLOW)</td>
<td>100 % *</td>
<td></td>
</tr>
<tr>
<td>ASP2 (TEMP)</td>
<td>-4 °F</td>
<td></td>
</tr>
<tr>
<td>AEP2 (TEMP)</td>
<td>176 °F</td>
<td></td>
</tr>
<tr>
<td>FEP</td>
<td>100 % *</td>
<td></td>
</tr>
<tr>
<td>FrEP</td>
<td>1 kHz</td>
<td></td>
</tr>
<tr>
<td>FDir</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>FPro</td>
<td>- +</td>
<td></td>
</tr>
<tr>
<td>LFC</td>
<td>1,1 gpm</td>
<td></td>
</tr>
<tr>
<td>D.In2</td>
<td>+EDG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factory setting</td>
<td>User setting</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>FOU1</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>FOU2</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>dST</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P-n</td>
<td>PnP</td>
<td></td>
</tr>
<tr>
<td>dAP</td>
<td>0.6 s</td>
<td></td>
</tr>
<tr>
<td>rTo</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>diS</td>
<td>d2</td>
<td></td>
</tr>
<tr>
<td>Uni</td>
<td>gpm</td>
<td></td>
</tr>
<tr>
<td>SELd</td>
<td>FLOW</td>
<td></td>
</tr>
<tr>
<td>SEL2</td>
<td>FLOW</td>
<td></td>
</tr>
<tr>
<td>EP.On</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>dEP.E</td>
<td>0 s</td>
<td></td>
</tr>
<tr>
<td>dEP.F</td>
<td>2 s</td>
<td></td>
</tr>
<tr>
<td>EP.SP</td>
<td>75 %</td>
<td></td>
</tr>
<tr>
<td>S.FLW</td>
<td>20 %</td>
<td></td>
</tr>
<tr>
<td>S.TMP</td>
<td>68 °F</td>
<td></td>
</tr>
<tr>
<td>S.Tim</td>
<td>3 min</td>
<td></td>
</tr>
</tbody>
</table>

* of the final value of the measuring range

More information at www.automationdirect.com