
66CommuniCations
ChapterChapterChapter

In This Chapter...
Communications: Capabilities ... 6-3
Communications: Ethernet ... 6-4
Communications: Remote I/O ... 6-5
Communications: GS Drive Devices ... 6-6
Communications (cont’d).. 6-7
Communications: Modbus RTU .. 6-8
Communications: Modbus RTU .. 6-9
Communications: Modbus RTU .. 6-10
Communications: Custom Protocol In and Out .. 6-11
Communications: Connectivity ... 6-12
Communications: Ethernet Port .. 6-13
Communications: Remote I/O Ethernet Port ... 6-14
Communications: USB OUT Port .. 6-15
Communications: USB OUT Port .. 6-16
Communications: RS-232 Port ...6-17
Communications: RS-485 Port .. 6-18
Communications ASCII and Custom Protocol Functionality ... 6-19
Communications: Ethernet ...6-22
Communications Modbus Functionality ...6-26
EtherNet/IP for the Productivity Series ... 6-41
Communications: Remote I/O and GS-Drives ...6-56
Communications: Port Configuration ..6-64
Communications: Port Configuration ..6-65

P3-550 Retired 06/2023

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. Tii Productivity3000

Communications: Port Configuration ..6-66
Remote Access Configuration ...6-67
Communications: Error Codes ...6-72
P3000 EtherNet/IP Error Codes ...6-73

Chapter 6: Communications

6-3Hardware User Manual, 4th Edition, Rev. TProductivity3000Hardware User Manual, 4th Edition, Rev. T

Communications: Capabilities
Communication Ports

The AutomationDirect P3000 CPUs are provided with several Communications Ports. Each
of these ports are described in the sections below.

• USB IN: The USB IN programming port is a USB Type B style connector located
on the upper left side of the CPU. It is used exclusively for connecting to
a PC running the Productivity Suite Programming Software. Installing the
programming software will install the USB driver as well. See Communications:
Connectivity section for connection information.

NOTE: The USB IN port is NOT compatible with 1.0/1.1 full speed USB devices.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-4 Productivity3000

Communications: Ethernet
Ethernet: The Ethernet port is 10/100 Base-T Ethernet with an RJ-45 style connector. It is
used for:

• Connection to a PC running the Productivity Suite programming software.
• Modbus TCP Client connections (Modbus requests sent from the CPU).
• Modbus TCP Server connections (Modbus requests received by the CPU).
• Outgoing Email.
• Modbus TCP Client connections: The CPU can connect to 32 Modbus TCP

server devices concurrently by means of communications instructions in the
ladder program (MRX, MWX, RX, WX). It is possible to connect to more than 32
Modbus TCP server devices, but not concurrently.

• This is accomplished by having communications instructions for more than 32
devices in the ladder program and controlling the enabling and disabling of
the instructions so that only 32 devices are enabled at a given time. To connect
to non Productivity3000® devices, use the MRX (Modbus Read) and MWX
(Modbus Write) instructions. To connect to other P3000 CPU’s, use the RX
(Network Read) and WX (Network Write) instructions.

• The greatest difference between the RX and the MRX is the RX Tag Name in
the target CPU can be referenced directly and does not need a corresponding
Modbus address. The way this is accomplished is by mapping local and remote
tagnames together within the local CPU’s RX instruction. Once the instruction is
set up to read a remote project, the “Tags of Remote Project” or “Array Tags of
Remote Project” drop down lists will be accessible. Map the Tag of the Remote
project to a Tag in the Local project to read this data.

P3-550(E)

Modbus TCP Client (MRX-MWX) Modbus TCP Client (RX-WX)

Chapter 6: Communications

6-5Hardware User Manual, 4th Edition, Rev. TProductivity3000

Communications: Remote I/O
• Modbus TCP Server connections: The CPU can serve data back to 32 Modbus

TCP Client devices concurrently. If 32 Modbus TCP Client devices are connected
to the CPU, then any new TCP connection requests will be denied until one of
the existing 32 devices drops its connection. If the Client device connecting to
the CPU is not a Productivity3000® device, then a Modbus address must be
assigned to the tag that is being requested. This is done in the Tag Database
window. If the device connecting to the CPU is another P3000 CPU or C-more
panel, no Modbus address is required. See Communications Port Configuration
for port configuration, Communications: Connectivity section for connection
information and Communications: Ethernet section for Ethernet set up.

Remote I/O: The Remote I/O port is 10/100Base-T Ethernet with an RJ-45 style connector.
It is used for connecting to a Remote I/O network consisting of P3-RS or P3-RX Remote
Slaves and/or PS-AMC modules and/or GS Drives.

NOTE: GS Drives require an additional communication module (GS-EDRV100 for GS 1, 2 and 3
series) or Modbus TCP communications card (for GS4 and GS20 series) to communicate on the
Productivity remote network.

• Remote Slaves: The P3-550(E) and P3-550E CPUs can connect with up to 16
P3-RS/RX Remote Slaves and 4 PS-AMC modules. The P3-550(E)/E will auto
detect all remote units that are configured with unique station addresses (by
means of two rotary switches on the front of the module). The configuration
can be managed in the Hardware Configuration in the Productivity Suite
Programming Software. See Communications Remote I/O and GS Drives
for configuration information and Communications: Connectivity section for
connection information.

Remote I/O Slaves

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-6 Productivity3000

GS Drive Devices: The P3-550(E) CPU can connect to up to
32 GS Drive communication modules/cards. The P3-550(E)

will auto detect all GS Drive communication modules/
cards that have a unique address (configured by the bank
of dipswitches on the module). The configuration can be

managed in the Hardware Configuration in the Productivity
Suite programming software. See Communications:
Remote I/O and GS Drives section for configuration

information and Communications: Connectivity section for
connection information.

USB OUT: The USB OUT data port is
the upper port of two USB 2.0 Type A
connectors on the CPU. The USB OUT
port uses a SDCZ4-2048-A10 Pen Drive
(may work with other pen drives) for
data logging only in the P3-530 or for
data logging and project transfers in the
P3-550(E).

NOTE: The USB OUT port is NOT compatible
with 1.0/1.1 full speed USB devices.

• Project Transfer (P3-550(E) only):
For security, this feature is disabled
by default when creating a new
project. It can be enabled in the
Hardware Configuration panel for the
P3-550(E). Once enabled, projects may
be transferred between a CPU and
Removable Storage Device, or between
a Removable Storage Device and PC.
Files stored on the Removable Storage
Device by a P3-550(E) or the Productivity
Suite programming software are stored
under a default name, so only one
project may be handled at a time on
a Removable Storage Device. Existing
projects on the Removable Storage
Device will be overwritten without a
prompt.

• Data Logging: The Data Logger tool
allows setup of periodic or event-
based data logging of tag and System
Errors to the Removable Storage Drive.
Data Logger setup is accessed under
the Monitor & Debug Menu. See
Communications: Connectivity section
for more information.

P3-550

Stride
Ethernet
Switch

Node 1

Node 2

Up to
Node 32

Remote GS1 (GS-EDRV100)

USB Removable Storage Drive

Communications: GS Drive Devices

Chapter 6: Communications

6-7Hardware User Manual, 4th Edition, Rev. TProductivity3000

EXP I/O OUT: The Expansion I/O port is the lower port of two
USB 2.0 Type A connectors on the CPU. The EXP I/O Out
port is only used for connections to local P3-EX modules in a
Productivity3000® base with I/O. Expansion I/O is treated as
local I/O by the CPU and is completely scan synchronous.
Except that PS-AMC modules run asynchronously with respect
to the ladder scan, so AMC status bits should be used for
interlocking logic if necessary.
The I/O is automatically detected on power up.

CAUTION: This port is ONLY for Expansion I/O. The signal
pins on this port are NOT standard USB. DO NOT USE A
USB REPEATER TO EXTEND THE RANGE OF THIS PORT. See
Communications Connectivity for more information.

RS-232: The RS-232 port is an RJ-12 connector located on the
right side of the CPU. This port can be used for:

• Modbus RTU Master connections.
• Modbus RTU Slave connections.
• ASCII Incoming and Outgoing communications.
• Custom Protocol

Incoming and Outgoing
communications.

Modbus RTU Master connections:
The RS-232 port is intended to be
used for point-to-point connections
but it is possible to connect up
to 128 devices on a network if a
RS-232 to RS-485/422 converter is
connected to the port (such as a
FA-ISOCON). This is accomplished
by using the communications
instructions in the ladder project
(MRX, MWX, RX, WX). If 4-wire
RS-485 or RS-422 communications
is needed, using this port with an
FA-ISOCON is the best method.
See Communications: Connectivity
section for more information.

P3-EX Expansion Network

RS-232 Modbus RTU Master Network Topology

Communications (cont’d)

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-8 Productivity3000

• Modbus RTU Slave
connections: The RS-232
port is intended to be
used for point-to-point
connections but it is possible
for the RS-232 port to be
used on a Modbus RTU
network by using a RS-232
to RS-485/422 converter.
The port is addressable in
the Hardware Configuration
in the Productivity Suite
programming software. It
is important to note that
the RS-232 port cannot
be a Modbus RTU master
and slave concurrently. If
the port is set to Modbus
RTU and there are no
communications instructions
(MRX, MWX, RX, WX) in
the project, the CPU will
automatically respond
to Modbus requests
from a Modbus master.
See Communications:
Connectivity section for
more information.

 ASCII Incoming and Outgoing communications: The RS-232 port can be used for sending
and receiving non-sequenced String data. This feature is typically used for receiving bar
code strings from a scanner or sending statistical data to a terminal or serial printer using
the ASCII IN and ASCII OUT instructions. See Communications: Connectivity section for
more information.

RS-232 Modbus RTU Slave Network Topology

RS-232 ASCII In Communication RS-232 ASCII In Communication

Communications: Modbus RTU

Chapter 6: Communications

6-9Hardware User Manual, 4th Edition, Rev. TProductivity3000

• Custom Protocol Incoming and
Outgoing communications: The
RS-232 port can be used for sending
and receiving non-sequenced
byte arrays to various devices.
This function is typically used
for communicating with devices
that don’t support the Modbus
protocol but have another serial
communications protocol. This is
accomplished by using the Custom
Protocol In and Custom Protocol
Out instructions. The RS-232 port
is intended to be used for point-to-
point connections but it is possible
for the RS-232 port to be used on
a multi-node network by using a
RS-232 to RS-485/422 converter. See
Communications: Connectivity for
more information.

RS-485: The RS-485 port is a 3-pin removable terminal block. The RS-485 port
can be used for:

• Modbus RTU Master connections.
• Modbus RTU Slave connections.
• ASCII Incoming and Outgoing communications.
• Custom Protocol Incoming and Outgoing communications.

Modbus RTU Master connections: The RS-485
network port is used for multi-node networks.
The CPU can connect to 128 Modbus RTU slave
devices on a network. This is accomplished
by using the communications instructions in
the ladder project (MRX, MWX, RX, WX). See
Communications: Connectivity section or more
information.

RS-232 Custom Protocol In and Out

Communications: Modbus RTU

RS-485 Modbus RTU
Master Network Topology

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-10 Productivity3000

• Modbus RTU Slave
connections: The RS-485
network port is used for
multi-node networks. The
port is addressable in the
Hardware Configuration
in the Productivity Suite
programming software. If
the port is set to Modbus
RTU and there are no
communications instructions
(MRX, MWX, RX, WX) in
the project, the CPU will
automatically respond
to Modbus requests
from a Modbus master.
See Communications
Connectivity for more
information.

• ASCII Incoming and Outgoing communications: The RS-485 port can be used
for sending and receiving non-sequenced String data. If long distances are
required between the ASCII device and the CPU, the RS-485 port is the better
selection because of its increased distance support (1,000 meters). ASCII
communications are typically used for receiving bar code strings from a scanner
or sending statistical data to a terminal or serial printer using the ASCII IN and
ASCII OUT instructions. See Communications: Connectivity section for more
information.

RS-485 Modbus RTU Slave Network Topology

RS-485 ASCII Out CommunicationRS-485 ASCII In Communication

Communications: Modbus RTU

Chapter 6: Communications

6-11Hardware User Manual, 4th Edition, Rev. TProductivity3000

Custom Protocol Incoming and Outgoing communications: The RS-485 port can be used
for sending and receiving non-sequenced byte arrays to various devices. This function is
typically used for communicating with devices that don’t support the Modbus protocol
but have another serial communications protocol. If long distances are required between
the device and the CPU, the RS-485 port is the better selection because of its increased
distance support (1,000 meters). This feature is accomplished by using the Custom
Protocol In and Custom Protocol Out instructions. See Communications: Connectivity
section for more information.

RS-485 Custom Protocol In and Out

Communications: Custom Protocol In and Out

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-12 Productivity3000

Communications: Connectivity
Communication Ports

The AutomationDirect P3000
CPUs are designed with several
Communications Ports, seven
communications ports on the
P3-550, six on P3-550E, and five
communications ports on the
P3-530. The connectivity for
each of these ports is described
in the sections below. The
Communication Ports available
are:

• USB IN Port (P3-550
only): Programming
port with a USB
Type B female
connector.

• This port requires a USB Type A-B cable (such as the
P3-EX-CBL6 cable).

The USB Port is the simplest method of connecting the
Productivity Suite programming software to the P3-550 CPU.
After the programming software has been installed, connect a USB
A to B cable from the PC to the CPU. Once the software has been opened, click on CPU
and select the “Choose CPU” option. The dialog shown below will appear.
Highlight the CPU listed in the dialog box and click on “Connect”. No configuration is
required.

NOTE: The USB IN port is NOT compatible with older 1.0/1.1 full speed USB devices.

Chapter 6: Communications

6-13Hardware User Manual, 4th Edition, Rev. TProductivity3000

• Ethernet Port: Programming and Modbus TCP Client/Server port with 10/100
Base-T Ethernet RJ45 connector.

General Information:
• Crossover cables can be used to directly connect two endpoint Ethernet

devices such as a PC network interface card and the CPU. Patch (or Straight-
through) cables are used to connect an endpoint Ethernet device to an
Ethernet switch.

• The maximum distance for one cable or segment is 100 meters (328 feet). If
the distance required between 2 devices is greater than 100 meters, add an
Ethernet switch to extend the distance. An Ethernet switch can be added every
100 meters (or less) almost indefinitely. Each Ethernet switch added will incur
some latency (actual amount differs between switches and manufacturers). So
if a very long distance is needed between 2 Ethernet devices, it may be better
to convert to fiber optics.

• The External Ethernet Port can be used as a programming port, a Modbus
TCP Client port, a Modbus TCP Server port, or to communicate to other P3000
CPUs. The External Ethernet Port can also be used to send emails using the
EMAIL instruction.

• Create a Connection:
 To communicate with
the Productivity Suite
programming software,
connect a crossover Ethernet
cable from the PC to the
CPU External Ethernet
Port or connect a patch
(straight-through) Ethernet
cable from the PC to an
Ethernet switch and another
patch cable from the Ethernet
switch to the External Ethernet
Port. Once the software has been opened, click on CPU and select the “Choose
CPU” option. The dialog shown below will appear.

Communications: Ethernet Port

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-14 Productivity3000

• Highlight the CPU that you wish to connect
to and press the “Connect” button. You may
see CPUs that are not on the same subnet as
your PC within the CPU Connections dialog
box, but this does not mean you can connect
to them. To connect to the CPU, you must
configure either your PC or your CPU to be in
the same subnet. You can easily change the
Ethernet settings of the CPU by highlighting
it and selecting the “Change CPU IP/Name”
button (shown below). Or if you prefer, the
PC Setup section of this chapter contains
information on configuring the Ethernet
settings of your PC.

Remote I/O Ethernet Port (P3-550(E) only): Ethernet RJ45 connector for P3-RS/RX Remote
Slave, and/or PS-AMC modules and/or GS Drive with communications modules.

• Crossover cables can be used to directly connect endpoint Ethernet devices and
the CPU. For example, connecting a P3-RS or P3-RX Remote Slave Module to
the P3-550(E) CPU. Patch (or Straight-through) cables are used to connect an
endpoint Ethernet device to an Ethernet switch.

• The maximum distance for one cable or segment is 100 meters (328 feet). If
the distance required between 2 devices is greater than 100 meters, add an
Ethernet switch to extend the distance. An Ethernet switch can be added every
100 meters (or less) almost indefinitely. Each Ethernet switch added will incur
some latency (actual amount differs between switches and manufacturers). So
if a very long distance is needed between 2 Ethernet devices, it may be better to
convert to fiber optics.

• The Remote I/O Ethernet Port is used to communicate to the Remote I/O
Network, consisting of Remote Slave bases (P3-RS/RX modules), PS-AMC
modules, and GS Drives (with an additional Modbus TCP communications
module/card). It is highly recommended that the network attached to this port
be isolated from other networks and it is absolutely necessary that it be isolated
from other Remote I/O networks. See Remote I/O and GS Drives topic for
details.

Communications: Remote I/O Ethernet Port

Chapter 6: Communications

6-15Hardware User Manual, 4th Edition, Rev. TProductivity3000

NOTE: USB Project Transfers are NOT supported by the P3-530 CPU.

USB OUT Port: USB Port for Data logging or project
transfer with USB 2.0 Type A connector.

• This Port serves two purposes: Data
logging with the P3-530 or data
logging and project transfers with the
P3-550(E), require a SDCZ4-2048-A10
Removable Storage Device (may work
with other pen drives).

NOTE: The USB OUT port is NOT
compatible with older 1.0/1.1 full speed
USB devices.

• Data logging is set
up in the Productivity
Suite Programming
Software Data Logger
configuration window.
See Data Logger Memory
section of the previous
chapter for setup
instructions.

• Project Transfer to and
from a USB drive can be
accomplished several
different ways:

• Transfer project to
USB Drive from PC
programming software.

• Transfer project from USB Drive to PC programming software.
• Transfer project from USB Drive to P3-550(E) CPU.
• Transfer project from P3-550(E) CPU to USB Drive.

NOTE: You must first select the “Enable project transfer to/from USB drive” checkbox in the
P3-550(E) CPU Module Configuration.

NOTE: Before transferring a project to the CPU via USB pen drive, ensure that you are NOT
connected with the programming software either by USB or Ethernet. If you attempt the transfer
with the software connected via USB or Ethernet, a PACCON Error will appear on the LCD of the
P3-550(E).

Communications: USB OUT Port

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-16 Productivity3000

• To transfer a project to or from a USB Drive from the PC
programming software, insert the USB Drive into a USB Port on
the PC. Go to File and Transfer Project and select To USB Drive or
From USB Drive.

• To transfer a project to or from a USB Drive on the P3-550(E)
CPU, press Menu on the CPU display LCD and scroll down to the
M8USB DRV option as seen on right.

• Select “>SAVE->PEN” to load the project that is currently on the
CPU down to the connected USB Drive.

• Select “>LOAD->CPU” to load the project that is currently on the
USB Drive to the CPU.

Expansion I/O OUT Port: Expansion I/O Port with USB 2.0 Type A connector.

CAUTION: The Expansion I/O Port is ONLY for connecting to other
Productivity3000® I/O bases with a P3-EX module in the CPU slot. This port is not
a standard USB A port. Note that in the diagram above, pin 1 is used for the System
Reset signal and is not the typical +5VDC VBUS signal on most USB A ports. DO
NOT USE EXTENDERS, CONVERTERS OR HUBS OF ANY SORT ON THIS PORT. A P3-EX-
CBL6 cable ships with each P3-EX Module. It is not recommended to use any cable
other than the one supplied.

• After this connection is made, power cycle the system and the CPU will
automatically detect the expansion I/O units. They can be used once the
Hardware Configuration has been read into the programming software. Up to 4
expansion I/O bases may be added to a CPU.

Communications: USB OUT Port

Chapter 6: Communications

6-17Hardware User Manual, 4th Edition, Rev. TProductivity3000

• The CPU is considered a DTE device. Most Modbus or ASCII devices being
connected to the CPU will also be considered a DTE device and will need to
swap TX and RX, but you should always consult the documentation of that
device to verify. If a communication device, such as a Modem, is placed
between the CPU and another Modbus or ASCII device it will most likely require
connecting the signals straight across (TX to TX and RX to RX). Again, this can
differ from manufacturer to manufacturer so always consult the documentation
before wiring the devices together.

• The RTS signal on pin 5 of the RS-232 Port will turn on when the TX signal is
turned on and the RTS signal will turn off when the TX signal turns off. The
amount of time that the RTS signal turns on before the TX signal turns on
and the amount of time that the RTS signal waits before turning off after
the TX signal turns off is adjustable in the P3-550(E) or P3-530 CPU Module
Configuration for the RS-232 Port. The RTS signal is very often required for
media converters, such as a RS-232 to RS-422/485 converter (much like the
FA-ISOCON).

• The RTS signal is sometimes required for use with Radio modems as well (Key
on and off control).

• There is also +5VDC @ 210mA on pin 2 available for powering an external
device such as the C-more Micro panel.

Communications: RS-232 Port
RS-232 Port: Serial RS-232 multipurpose communications port with RJ12 connector.

• The RS-232 Port can be connected to Modbus RTU master or slave devices,
as well as devices that output non-sequenced ASCII strings or characters.
The manner in which these devices are wired to the CPU depends whether
the device is considered to be DTE (Data Terminal Equipment) or DCE (Data
Communications Equipment).

• If two DTE devices are connected together, the RX and TX signals should cross
or the RX of one device should go to the TX of the other device and the TX of
one device should go to the RX of the other device (as shown below).

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-18 Productivity3000

RS-485 Port: Serial RS-485 multipurpose communications port with removable 3-pin
connector.

• The RS-485 Port is useful for connecting multiple Modbus and ASCII devices on
one network and/or connecting devices to the CPU at distances greater than
50 feet (RS-232 limit). The RS-485 standard supports distances of up to 1000
meters without requiring a repeater. The RS-485 Port on the CPU can support
up to 50 devices, depending on each device’s load (this assumes a 19K Ohm
load for each device). This number can be increased by placing an RS-485
repeater on the network, if necessary.

• This port only supports RS-485 2-wire connections. For 4-wire RS-485 or
RS-422, a converter, such as an FA-ISOCON, should be used with the RS-232
Port.

• A 120 Ohm resistor is required at each end of the network for termination.

Communications: RS-485 Port

Chapter 6: Communications

6-19Hardware User Manual, 4th Edition, Rev. TProductivity3000

Communications ASCII and Custom Protocol
Functionality

Besides Modbus RTU, there are two additional functions supported on the serial ports in
the Productivity3000® system.

• The first function is the ability to send and receive text-based data with devices
such as bar code readers and serial printers.

• The second function is the ability to communicate serially with other devices
that do not support the Modbus protocol and lack a Productivity3000 driver.

ASCII Instructions
 The ASCII In/Out instructions use
the String data type to send or
receive text-based data through
the serial port. The String data type
is only intended for use with the
“printable character set”. This can
include numbers, letters or special
characters.

• With the ASCII In
instruction, the CPU can
receive a fixed length of
characters or a variable
length of characters
with a termination code
(an ‘end of message’
character).

• • The ASCII Out instruction sends
text-based data out of the serial
port to various devices for control,
printing or display.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-20 Productivity3000

Full duplex Mode (P3-550(E)/530)
1. RS232 can be set to FulDuplex node. Half Duplex is selected by default. This cna

be changed in the Hardware Configuration window for the CPU serial port.
2. AIN and AOUT instructions may be enabled at the same time.
3. AOUT may be enabled while AIN is already active, and vice versa.
4. The user may control treatment of buffered data before AIN

is enabled using the checkbox mentioned above.
5. RTS mode must be either always on or always off.

Assert during transmit is not available.
Half duplex Mode [default] (P3-550(E)/530)
The ASCII instruction limitations are that it is not advisable to use the ASCII Out instruction
to send a String to a device that will respond (if the response is needed) and to use the
ASCII IN (AIN) instruction to try to receive this data.

1. AIN and AOUT cannot be enabled at the same time on the same serial port.
2. When the AOUT completes, the AIN cannot be enabled until the next logic scan.
3. The user may control treatment of buffered data before AIN

is enabled using the checkbox mentioned above.

Custom Protocol Instructions
The Custom Protocol is a HEX based protocol used to communicate with devices that do
not have the standard Modbus RTU Protocol. There are two instructions used with Custom
Protocol communication:

• Custom Protocol Out
(CPO)

• Custom Protocol In (CPI)
Custom Protocol Out
The Custom Protocol Out instruction
allows the user to send a ‘byte
formatted’ packet of data out of the
CPU serial port.
Constant values and/or Tag values
can be used as the source for data
transmitted. There are several
formatting options including Byte
Swap and Checksum.

Chapter 6: Communications

6-21Hardware User Manual, 4th Edition, Rev. TProductivity3000

The Checksum option allows the user to select where in the packet the checksum should
be inserted, what type of Checksum (CRC-8 bit, CRC-16 bit, CRC-32 bit, XOR-8 bit, XOR-16
bit and XOR 32 bit), which bytes of the data source should be used in the calculation of the
checksum, what the byte order should be of the checksum (if greater than 8 bit) and how
to preload the checksum calculation.
If the device requires a different Checksum calculation, this can be done outside of the
instruction in other ladder code and the resulting Tag values can be inserted where
appropriate in the packet.
Termination characters can also be specified when needed.
The Custom Protocol Out instruction is for transmission only. If information needs to
be received from field devices, the Custom Protocol In instruction will have to be used.
Unlike ASCII, the Custom Protocol will buffer the received data. When the Custom
Protocol In instruction is executed, it will retrieve any data held in this buffer. Therefore,
the lost responses found with ASCII communication do not occur with Custom Protocol
communication.
Custom Protocol In
The Custom Protocol In instruction
has similar formatting options to the
Custom Protocol Out instruction.
The Custom Protocol In instruction
will calculate the Checksum of the
data packet received based on the
criteria specified in the instruction
and this will determine the state
of the status bits assigned to
the instruction. If the Checksum
calculation passes based on the
criteria specified in the instruction,
the “Success” status bit will become
true. If the Checksum calculation
fails, the “Checksum Error” status bit
will become true.
With the CPI instruction, the packet
termination must be specified, either
in terms of a termination character(s)
or a packet length. If a Checksum
is expected in the reply, be sure to
include this in the Fixed Length value
specified.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-22 Productivity3000

Communications: Ethernet
TCP and UDP Port Numbers

When doing TCP/IP and UDP/IP communications, there is a Source Port number and
Destination Port number for every message. The Client device must be aware of the
Destination Port Number(s) that the Server device is expecting to see and the Server device
must listen for this Destination Port number. After the Server device has received the
message with the Destination Port Number that it is listening on, it will formulate the return
message (if the applications require this) with the Source Port Number from the message
sent as its Destination Port Number.
It is important to understand a little about the Port numbering concept because many
Ethernet devices, such as routers with firewalls, will block messages with Destination
Port numbers that are not configured for that device. Listed below are the default Port
Numbers used in the Productivity3000® system. Some of these are configurable, allowing
more flexibility when going through routers in many applications.

IP Addressing and Subnetting
IP Addresses (used in conjunction with the Subnet Mask and Default Gateway address) are
used for network routing. This allows for easy and logical separation of networks.
It is outside of the scope of this help file to explain how IP Addresses and Subnet masks
are configured for actual usage. There are many books, documents and tools (Subnet
calculators) on the internet that provide this information. Each facility and network will
incorporate their own rules and guidelines for how their networks are to be configured.

Port
Port Number

(Decimal Format)
TCP or
UDP

Configurable

Programming Software CPU Discovery 8888 UDP No
Programming Software Connection and
Project Transfer 9999 UDP No

Modbus Client Connections
(MRX, MWX, RX and WX instructions) 502 TCP Yes

Modbus Server Connections 502 TCP Yes
GS-Drive Discovery 28784 UDP No
GS-Drive Connection 502 TCP No
Remote I/O Discovery 8887 UDP No

Remote I/O Connection 8877 UDP No

Email Instruction 25 TCP No
Ethernet IP 44818 TCP Yes
Ethernet IP 2222 UDP No*
* Adapters may choose to respond using another port number.

Chapter 6: Communications

6-23Hardware User Manual, 4th Edition, Rev. TProductivity3000

PC Setup
For testing and verification purpose, it is
recommended that the PC and the CPU be on
an isolated Ethernet switch. Configure the PC’s
network interface card setting as described
below.

1. Go to Start, then Run, type ncpa.cpl in
the Open field and click on OK to bring
up the Network Connections dialog.

NOTE: Many system settings on your computer require Administrative privileges. Consult with
your IT department for necessary privileges and approvals.

NOTE: You should record initial settings prior to making any network configuration changes.

2. Network Connections
• Right click on

the Network
interface shown
in the Network
Connections
dialog and select
Properties. If there
is more than one
Network Interface
on the PC, be sure
to choose the one
connected to the
Ethernet Switch with
the CPU on it.

• From the Local
Area Connection
Properties window,
highlight the Internet
Protocol(TCP/IP)
selection and click
on Properties.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-24 Productivity3000

3. Internet Protocol (TCP/IP) Properties.
• In the Properties window, select Use the following IP address.
• Enter an IP Address of 192.168.1.1 and Subnet Mask 255.255.255.0 and select

OK. Select OK again on the Local Area Connection Properties window.

CPU Setup
Now configure the CPU’s network IP setting as shown below.

1. Select CPU from the Productivity3000® software Main Menu
and then select Choose CPU from the drop down menu.

2. The CPU Connections window will open as shown below.

Chapter 6: Communications

6-25Hardware User Manual, 4th Edition, Rev. TProductivity3000

 Click to highlight the CPU connected to the Ethernet switch.
 Select the “Change CPU IP/Name” button.

3. The Change IP Address/CPU Name window will open as shown below.
• Enter an IP Address of 192.168.1.2 and Subnet Mask 255.255.0.0 for the CPU’s

network IP setting and select OK.

The CPU is now configured with the correct IP Address for connectivity with the PC. The
IP Address and Subnet Mask settings will very likely differ from what will be used in the
actual application. Consult the Network Administrator of the facility where the CPU will be
installed to get the appropriate settings for that network.

TCP Connection Behavior with Modbus TCP and Network Instructions
When performing communications over TCP, a Connection must be established before the
applications can transfer data. The connection is typically maintained until the application
decides that the connection is no longer needed and then the connection will be severed.
Frequent connects and disconnects are not efficient for the Client or the Server and can
add unnecessary network traffic. But maintaining connections needlessly is also costly to
the Client and Server in terms of processing and memory so this should also be avoided.
The CPU allows user control of Client connections through enabling and disabling
the rungs containing Modbus and Network instructions. The MRX, MWX, RX and WX
instructions have two options for sending messages: Automatic Poll and Manual Poll.
Automatic Poll sends out messages at a specified rate. Enabling the instruction performs
a TCP connect with the Server device. Once the connection is established, the instruction
messages are sent at the rate entered in the poll rate field. This continues until the
instruction is disabled. The TCP connection will automatically be severed five seconds after
the instruction is disabled.
Manual Poll sends out a message each time the instruction is enabled. Enabling the
instruction performs a TCP connect with the Server device and sends the message one
time. The TCP connection will automatically be severed five seconds after receiving the
reply from the Server device. If the instruction gets another positive edge enable within
the five seconds, the message will be sent and the disconnect of the TCP connection will be
delayed by an additional five seconds.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-26 Productivity3000

Communications Modbus Functionality
Master/Client Function Code and Data Type Support

The following table lists the Modbus data type, the function code and the CPU source data
type that is supported when the CPU is the Client or Master on a Modbus TCP or serial
connection.

Modbus Client/Master Support
(Using MRX and MWX Instructions)
Function
Code Function Name Modbus 984 Addressing

(Zero Based)
Modbus 984
Addressing

Productivity3000® Tag Types
(Data designation or source)

01 Read Coil Status 000000 - 065535 000001 - 065536

Discrete Output (DO)

Boolean (C)

Boolean System (SBRW)

02 Read Coil Status 100000 - 165535 100001 - 165536

Discrete Input (DI)

Boolean (C)

Boolean System (SBRW)

03 Read Holding
Registers 400000 - 465535 400001 - 465536

Integer 8 bit Unsigned (U8)
Integer 16 bit (S16)
Integer 16 bit Unsigned (U16)
Integer 16 bit BCD (B16)
Integer 32 bit (S32)
Integer 32 bit BCD (B32)

Integer 32 bit Float (F32)

Integer 16 bit System (SWRW)

04 Read Input
Registers 300000 - 365535 300001 -365536

Integer 8 bit Unsigned (U8)

Integer 16 bit (S16)

Integer 16 bit Unsigned (U16)

Integer 16 bit BCD (B16)

Integer 32 bit (S32)

Integer 32 bit BCD (B32)

Integer 32 bit Float (F32)

Integer 16 bit System (SWRW)

05 Write Single Coil 000000 - 065535 000001 - 065536

Discrete Input (DI)

Discrete Output (DO)

Boolean (C)

Boolean System (SBRW)
Boolean System Read Only (SBR)

Chapter 6: Communications

6-27Hardware User Manual, 4th Edition, Rev. TProductivity3000

Modbus Client/Master Support
(Using MRX and MWX Instructions) (continued)
Function
Code Function Name Modbus 984 Addressing

(Zero Based)
Modbus 984
Addressing

Productivity3000® Tag Types
(Data designation or source)

06 Write Single
Register 400000 - 465535 400001 - 465536

Integer 8 bit Unsigned (U8)

Integer 16 bit (S16)
Integer 16 bit Unsigned (U16)
Integer 16 bit BCD (B16)
Integer 32 bit (S32)

Integer 32 bit BCD (B32)

Integer 32 bit Float (F32)

Integer 16 bit System (SWRW)
Integer 16 bit System Read Only (SWR)

15 Write Multiple
Coils 000000 - 065535 000001 - 065536

Discrete Input (DI)

Discrete Output (DO)
Boolean (C)
Boolean System (SBRW)
Boolean System Read Only (SBR)

16 Write Multiple
Registers 400000 - 465535 400001 - 465536

Integer 8 bit Unsigned (U8)
Integer 16 bit (S16)
Integer 16 bit Unsigned (U16)
Integer 16 bit BCD (B16)
Integer 32 bit (S32)
Integer 32 bit BCD (B32)
Integer 32 bit Float (F32)
Integer 16 bit System (SWRW)
Integer 16 bit System Read Only (SWR)

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-28 Productivity3000

Slave/Server Function Code and Data Type Support
The following table lists the Modbus data type, the function code and the CPU source
data type that is supported when the CPU is the Server or Slave on a Modbus TCP or
serial connection.

Modbus Server/Slave Support
Function
Code Function Name Modbus 984 Addressing Productivity3000® Tag Types

(Data designation or source)

01 Read Coil Status 000001 - 065536
Discrete Output (DO)
Boolean (C)
Boolean System (SBRW)

02 Read Coil Status 100001 - 165536
Discrete Input (DI)
Boolean System Read Only (SBR)

03 Read Holding Registers 400001 - 465536

Integer 8 bit Unsigned (U8)
Integer 16 bit (S16)
Integer 16 bit Unsigned (U16)
Integer 16 bit BCD (B16)
Integer 32 bit (S32)
Integer 32 bit BCD (B32)
Integer 32 bit Float (F32)
Integer 16 bit System (SWRW)
String

04 Read Input Registers 300001 -365536
Analog Input, Integer 32 bit (AIS32)
Analog Input, Float 32 bit (AIF32)
Integer 16 bit System Read Only (SWR)

05 Write Single Coil 000001 - 065536
Discrete Output (DO)
Boolean (C)
Boolean System (SBRW)

06 Write Single Register 400001 - 465536

Integer 8 bit Unsigned (U8)
Integer 16 bit (S16)
Integer 16 bit Unsigned (U16)
Integer 16 bit BCD (B16)
Integer 32 bit (S32)
Integer 32 bit BCD (B32)
Integer 32 bit Float (F32)
Integer 16 bit System (SWRW)
Integer 16 bit System Read Only (SBR)
String

15 Write Multiple Coils 000001 - 065536
Discrete Output (DO)
Boolean (C)
Boolean System (SBRW)

Chapter 6: Communications

6-29Hardware User Manual, 4th Edition, Rev. TProductivity3000

Assigning Modbus Addresses to Tags
There are many different data types in the CPU. Because of this, the Modbus addresses
need to be mapped to the various tag data types in the CPU.
There are two ways to map Modbus addresses to Tags in the Programming software: 1.)
Modbus mapping in Tag Database window; 2.) Modbus mapping when creating Tags.

1. Modbus mapping in Tag Database window:
• There are only two data sizes in the Modbus protocol: bits and words. In the

CPU, there are multiple size types, so it is sometimes necessary to map multiple
Modbus addresses to a single Tag entity. There are also array data structures in
the CPU. When Modbus addresses are mapped to arrays, they will be mapped
as a contiguous block of addresses. This is, in fact, the most efficient method to
handle Modbus communications.

• In the Tag Database window, there are two columns named “Mod Start” and
“Mod End”. To map a Modbus address to a tag in the Tag Database window,
simply double-click in the Mod Start field for the Tag.

Modbus Server/Slave Support (continued)
Function Code Function Name Modbus 984 Addressing Productivity3000® Tag Types

(Data designation or source)

16 Write Multiple Registers 400001 - 465536

Integer 8 bit Unsigned (U8)
Integer 16 bit (S16)
Integer 16 bit Unsigned (U16)
Integer 16 bit BCD (B16)
Integer 32 bit (S32)
Integer 32 bit BCD (B32)
Integer 32 bit Float (F32)
Integer 16 bit System (SWRW)
Integer 16 bit System Read Only (SBR)
String

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-30 Productivity3000

When you do this, you will see two values appear in the field. The left most value is the
Modbus data type. This is fixed based upon the tag data type. The chart below indicates
the four different Modbus data types in the 984 addressing scheme.

The right most value that you
see in the “Mod Start” field is the
address offset (range is from 1 –
65535). You can accept the value
that is pre-filled for you or the value
can be changed. The software
automatically pre-fills the address
offset with the next available
address.

Address
Identifier Modbus 984 Address Type

0xxxxx Coil (Read/Write bit)

1xxxxx Input (Read Only bit)

3xxxxx Input Register (Read Only 16 bit word)

4xxxxx Holding Register (Read/Write 16 bit word)

Chapter 6: Communications

6-31Hardware User Manual, 4th Edition, Rev. TProductivity3000

2 Modbus mapping when creating Tags:
• Modbus addresses can be assigned to Tags as they are created in the Tag

Database.

• Type in the Modbus offset value when entering the Tag Name and Data Type. If
the address is already assigned, a warning message will appear.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-32 Productivity3000

Modbus Options
The Modbus protocol does not have a specific method outlined for data types outside of
bits and 16-bit words. Most systems now have 32-bit data types. In order to transport
32-bit data types across Modbus, they must be placed into two Modbus 16-bit registers.
Unfortunately, some devices do not support this and there are sometimes incompatibilities
in the order of the 16-bit high word and low word handling between the devices.
In order to help alleviate this situation, there are some options for handling this in the
programming software. To find the Modbus Address options, go to File and click on
Project Properties and then click on the “Modbus Server Settings” tab.

• No exception response for non-existing Modbus address requests: Because the
Modbus addresses can be manually assigned to tags, it is possible that gaps
can occur in the Modbus address mapping. For example: Tag1 has Modbus
address 400001 assigned to it and Tag 2 has Modbus address 400003 assigned
to it.

Chapter 6: Communications

6-33Hardware User Manual, 4th Edition, Rev. TProductivity3000

• Most Modbus Master/Client devices will attempt to optimize their data requests
to a Modbus Slave/Server device by requesting blocks of data instead of
individual registers. In the case mentioned previously, most Modbus masters
would send one read request starting at 400001 and a size of three instead of
sending two read requests starting at 400001 with size one and 400003 with
size one as shown below.

• In the example shown above on left, a Modbus Slave/Server device should
give an exception response since there is no Modbus Address of 400002 in
the device. This method can cause a lot of inefficiencies. By selecting the “No
exception response for non-existing Modbus address requests” option, the
CPU will not give an exception response to the request. Note that if Modbus
address 400002 by itself were requested it would give an exception response.

• Word swap option (S-32, AIS-32, AOS-32, F-32, FI-32, FO-32):
• Word swap allows the word order of 32-bit tags to be changed when

sending the values across Modbus. The default selection is on, which
returns the data low word first.

• Tag1 (Integer, 32-Bit) = 305,419,896 (hex = 0x12345678)
 Tag1 Modbus address = 400001, 400002
 Modbus reply for Tag1 (Word Swap ON) = 01 03 04 56 78 12 34

 Modbus reply for Tag1 (Word Swap OFF) = 01 03 04 12 34 56 78

Low
Word
First

High
Word
Last

High
Word
First

Low
Word
Last

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-34 Productivity3000

Map value to a single 16 bit Modbus register:
• This option allows for compatibility with devices that do not support 32-bit

Modbus functionality. This option can be selected individually for the Analog
Input and Output Signed 32 data types and the Internal Signed 32 data types,
including the array form of these data types. This function is only useful when
the value contained in a 32-bit tag does not exceed a signed 15-bit value
(32,765).

 Tag1 (Integer, 32-Bit) = 22136 (hex = 0x00005678)
• With “Map value to a single 16 bit Modbus register” turned OFF =
 Tag1 Modbus address = 400001, 400002
• Modbus reply for Tag1 (Word Swap ON) = 01 03 04 56 78 00 00
• With “Map value to a single 16 bit Modbus register” turned ON =
 Tag 1 Modbus address = 400001
• Modbus reply for Tag1 = 01 03 02 56 78

Map value to two consecutive 16-bit Modbus registers: Allows for 32-bit data types to be
mapped to two consecutive 16-bit registers. This option is selected as default.

• All of the options in the “Modbus Address” tab of the Project Properties only
apply to the Modbus Slave/Server functionality. Similar options are available
for the Modbus Master/Client functions as well and are available in the MRX
and MWX Modbus instructions.

Chapter 6: Communications

6-35Hardware User Manual, 4th Edition, Rev. TProductivity3000

Modbus Instructions
To read or set data in other Modbus Slave/Server devices, there are two instructions
available in the programming software, Modbus Read and Modbus Write.

• The Modbus Read (MRX) instruction is used to read data from other
Modbus devices into Tags of the CPU.

• The MRX instruction can be used for Modbus TCP or Modbus RTU.
There are several status bits that can be used to determine whether the
read message was successful and if it was not, the reason why.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-36 Productivity3000

There is an “Automatic Polling” feature in the instruction to make it easier to read a device
on a pre-determined poll rate. There is also a “poll offset” field that can be used when
simultaneous instructions are enabled with the Automatic Polling feature to help stagger
the flow of messages being sent to the network.

• The Modbus Write (MWX) instruction is very similar in layout and configuration
to the MRX instruction. It is used to write values to a Modbus device from the
tags in the CPU.

• The MWX operates very similarly to the MRX instruction. There are also many
status bits to indicate the success or reason of failure when sending a message.

• The Automatic Polling option is also available to the MWX instruction, although
greater care should be taken when using this feature in this instruction. This is
explained in better detail in the “Message Queue” section.

Chapter 6: Communications

6-37Hardware User Manual, 4th Edition, Rev. TProductivity3000

Network Instructions
The Network Read (RX) and Network Write (WX) instructions are used to communicate to
other CPUs. They are very similar in operation to the MRX and MWX instructions but they
target Tag Names instead of Modbus addresses in the other CPU. There is also a significant
performance gain in using the RX and WX instructions when communicating to other CPUs
as opposed to using the MRX and MWX instructions.

The same status bits are available in the RX instruction as in the MRX instruction and
operate in the same manner. The greatest difference in the RX versus the MRX is that with
the RX, the Tag Name in the target CPU can be referenced directly and does not need a
corresponding Modbus address. The way this is accomplished is by mapping local and
remote tag names together within the local CPU’s RX instruction. Once the instruction is
set up to read a remote project, the “Tags of Remote Project” or “Array Tags of Remote
Project” drop down lists will be accessible. Map the Tag of the Remote project to a Tag in
the Local project to read this data.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-38 Productivity3000

The WX instruction operates in the same manner except that the data from the Local tags
will be written into the Tags of the remote project. No Modbus mapping is required.

NOTE: The PC programming software project for the Remote CPU must be accessible by the PC
running the programming software for the Local project.

Automatic Poll versus Manual Polling and Interlocking
In many cases when performing multiple communications requests to other devices,
the message flow must be explicitly controlled in ladder code so that a message is not
sent while another one is in operation. This usually requires writing ‘interlocking’ code
between the instructions which typically involves the use of timers and shift registers, etc.
Sometimes this is necessary because of the application but in other cases where the CPU
just wants to read changing values from other devices and the frequency of that update
is not critical it would be much more efficient to skip the unnecessary code complexity of
interlocking.
The desire to make it easier to communicate to other devices brought about the
“Automatic Polling” feature and the “Message Queue” in the CPU. The Automatic Polling
feature allows the user to choose the rate at which they desire to send messages without
having to use a separate timer and enable logic. The ‘Message Queue’ allows the user to
stage the messages from the ladder code to go out to each physical communications port
without requiring interlocking logic.

Chapter 6: Communications

6-39Hardware User Manual, 4th Edition, Rev. TProductivity3000

The implementation of how the message queue works is slightly different based on
whether the request is a read request or a write request.

Write requests will fill the queue much faster than read requests. That’s why it is advisable
to carefully choose when doing write requests whether to use the “Automatic Poll” feature
or to manually send write requests only when needed (data to write has changed). When
designing a system, it is important to know the total time it takes to send a request and get
a reply for each target device. The Poll time should be longer than this time. The longer
the poll time can be, within tolerance of the application, the better the overall network
performance. So for efficiency in programming and for the best possible performance
for the system, conservative poll rates should be used when utilizing the “Automatic Poll”
feature.
There is also a “Poll offset” field in the communications instructions. This helps prevent the
instructions from being queued all at the same time. When the CPU project starts, there is
a master timer that begins. The ladder scan will look to see if the instruction is enabled. If
it is enabled, it will begin the Automatic Poll timer at the specified poll offset value from the
master time clock.

Timer
Complete?

Read or
Write?

Go to Write Request
Flowchart

Read

Write

Yes

Yes

Yes

No

No

Request
Already in

Queue?

Using
Automatic

Poll?

Add
Request to

Queue

Discard
Request

Go to Next
Instruction

No

Read Request Flowchart

Timer
Complete?

Read or
Write?

Go to Read Request
Flowchart

Read

Write

Yes

YesNo

NoUse
Automatic

Poll?

Add
Request to

Queue

Go to Next
Instruction

Write Request Flowchart

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-40 Productivity3000

Message Queue
If the application requires more explicit, orderly control of each message sent to the
devices, turn off the “Automatic Poll” feature. Using the instruction’s status bits, logically
control each message as required.
All of the above explains how messages get into the “queue”. There are several factors
involved with how each queue (1 for each physical port) is emptied.

• Serial port queues: The serial port queues empty slower than the Ethernet
port queues, not just because of the hardware speed itself but because of the
nature of serial communications. Each request sent must wait for a response or
a timeout (whichever comes first). Once the reply is received for a request or
a timeout has occurred, the next item in the list can be sent. So the response
time of the slave devices on the network will largely affect the speed at which
the queue fills and empties.

• Ethernet port queues: The Ethernet port queue can empty faster because
when sending requests to multiple devices, the CPU does not have to wait on
a response from one device before sending a request to another device due
to the inherent nature of the Ethernet hardware. However, sending multiple
requests to the same Ethernet device does necessitate that the CPU waits for
a response from the first request before sending another request to that same
device.

Another difference in the Ethernet port queue versus the Serial port queue spawns from
the TCP ‘connection’ based behavior of Modbus TCP. If a TCP connection is lost to a device
and there are still requests in the queue for that device, those requests will be dropped
from the queue. There are three ways this can happen:

1. If a TCP timeout occurs (server device fails to respond within
specified timeout value), the TCP connection is lost.

2. If the server device closes the connection, then all of the requests will be dropped.
3. And, finally, if all rungs with communications instructions to a device are disabled

for five seconds, the CPU will drop the TCP connection for that device in order
to free up valuable resources that could be used elsewhere in the system.

This is another factor that should be considered when designing the system. If it is
imperative that no message be lost when communicating to a device, each instruction
should be explicitly handled one by one (interlocking logic).

Chapter 6: Communications

6-41Hardware User Manual, 4th Edition, Rev. TProductivity3000

EtherNet/IP for the Productivity Series
Terminology Definitions

A lot of terminology associated with EtherNet/IP is not always clear. Some of these terms
are listed below along with their respective definitions.

• Scanner: This is the term used to describe the device that initiates the
EtherNet/IP sessions. The Scanner is sometimes referred to as the “Originator”
as well. In more standard Ethernet terms, the Scanner would often be called the
“Client”.

• Adapter: This is the device that responds to the EtherNet/IP communications
that are initiated by the Scanner. The Adapter is also known as the “Target” as
well. Typically, the Adapter is an Ethernet “Server”.

• Object: In EtherNet/IP, an Object is a representation of a defined set of
Ethernet connections, behaviors, services and data attributes. There are
standard objects and there are custom defined objects as well. See Object
Modeling example below.

• Class: A Class is a set of Objects that are related in some fashion. See Object
Modeling example below.

• Instance: An Instance is an actual, usable manifestation of an Object. See
Object Modeling example below.

• Attributes: Attributes are the specific items within an Object Class. The
category of Attributes should be the same for all Instances of an Object but the
actual Attribute itself might vary. See Object Modeling example below.

• Connection Point: A Connection Point value is the “Class Code” reference for
a data block. This value is required for access to input and output data in IO
Messaging. It is typically defined for each input and output data block by the
Adapter device manufacturer.

• IO Messaging: IO Messaging (also called “Implicit Messaging”) is a method of
reading and writing blocks of data without defining the Connection Point and
size for each block transfer. The Connection Point, size and transfer rate (RPI)
are defined at the beginning and then the data blocks are transferred at the
specified intervals.

• Explicit Messaging: This method of reading or writing data requires that each
message defines the type of data and size of data needed for each request.

Object Modeling Example:
• Class ------- Definition of Automobile
• Attributes -- Make, Model, etc…
• Object ------ A Ford Mustang
• Instance ----Sally’s Ford Mustang

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-42 Productivity3000

Network Layer Chart

The diagram above illustrates the OSI seven layer model and how EtherNet/IP fits into
this model. In general, there are three basic layers for sending and receiving data in the
EtherNet/IP protocol:

• EtherNet/IP layer (Register Session, etc…)
• CIP layer (CIP Forward Open, etc…)
• The uppermost layer,which contains several different types of messaging.

The ODVA specification defines many different types of messaging that reside on the CIP
layer. Two types of messaging supported in the phase 1 release of the Productivity3000®
EtherNet/IP protocol are IO Messaging and Explicit Messaging. IO Messaging is
accomplished through a Class 1 Connection and Explicit Messaging can be accomplished
through a Class 3 Connection or an Unconnected Message.
Tag Based Messaging (used for reading and writing values to Allen Bradley Control and
ComCPUtLogix PLCs) and PCCC (used for reading and writing values to Allen Bradley
MicroLogix and SLC PLCs) are planned for subsequent phases of this protocol.

EtherNet/IP Data
When doing IO Messaging, the data that is transported is defined as “Input” data and
“Output” data. Don’t confuse this type of data with what most PLCs define as Input data
and Output data. In most PLCs, Inputs are typically associated with an Input module
that reads point from real word devices. Outputs are typically associated with an Output
module that turns off and on real word devices.
In IO Messaging, Input data is data that is sent from the target device back to the
Originator or to multiple devices that are listening (multicast messages). Output data is
data that is sent from the Target device. This data may or may not be connected to real
word devices. That is completely dependent upon the Adapter device. For example: When
the Productivity3000 is configured as an EtherNet/IP Adapter device, the Input data and
Output data is defined in internal data arrays and does not directly tie to any Input and
Output point to the real world. If it is desired to tie these array elements to real word
devices, that must be accomplished in code by Copy commands (or other instructions).

NOTE: The Scanner (originator) in the P3000 will only accept messages from an Adapter (target)
device that the Scanner has established a connection to.

NOTE: The Adapter (target) in the P3000 will respond back to a Scanner (originator) in the method
(Multicast or Unicast) that is sent in the forward open message from the Scanner (originator).

Chapter 6: Communications

6-43Hardware User Manual, 4th Edition, Rev. TProductivity3000

Class 1 and Class 3 Connections
What are they and how are they best used?

• Class 1 Connection is the transport mechanism that IO Messaging uses to send
data. The basic concept is that data is sent in one direction: the Originator
sends Output data in a Unicast UDP message to the Target and the Target sends
Input data in either a Unicast message back to the Originator or Multicast UDP
messages to multiple devices. The Input data and Output data messages have
no relationship to each other. This method works well for Remote I/O type data
and is very efficient due to little overhead and reduced handshaking messages
on the wire. Class 3 Connection is one of the mechanisms that Explicit
messaging uses. Class 3messaging uses TCP messages unlike Class 1. Each
Class 3 request has a header that defines the type of data requested as well as
the size requested. It allows for more flexibility in messaging but does create
additional overhead.

NOTE: Explicit messaging can be accomplished with unconnected messages as well for more
infrequent requests. Explicit messaging is a slower performing method of communications but it
typically allows for more flexibility and control when the situation requires it.

When can the P3000 CPU use Class 1 or Class 3 Connections?
• Class 1 and Class 3 Connections can be accomplished with the

Productivity3000® CPU as an Adapter or as a Scanner or both simultaneously.
How many connections can the P3000 support for Ethernet IP?

• 4 - TCP
• 4 - Ethernet IP
• 4 - CIP (Up to 4 CIP connections are allowed per Ethernet IP connection.

Therefore, if one device can support 4 CIP connections then you can have up to
a total of 16 CIP connections using 4 devices)

Example Setup: Productivity3000 as EtherNet/IP Adapter
The Adapter setup is accomplished through the EtherNet/IP
Adapter setup under the Comm Adapter Config section of the
Setup menu as seen on right.

When the EtherNet/IP
Adapter is selected from the
menu the window shown
here will open.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-44 Productivity3000

Fill in the required parameters and once configured these parameters will be used to
configure the Scanner side as shown in the examples below. The first example shows how
to setup a Class 1 IO Message connection from a 3rd party EtherNet/IP Scanner device (an
Allen Bradley PLC).

The following example shows how a Class 3 Explicit Message might be accomplished from
a 3rd party device (Allen Bradley PLC). As you can see the Input Data must be retrieved
in one connection or message and the output data in another. Remember that Class 3
messaging is not as efficient in protocol messaging as Class 1 but it does allow for granular
control.

NOTE: In this example, size configuration is not shown on the Scanner side. The tag created for
the Destination must be large enough to contain the data requested (shown with dashed boxes).

Chapter 6: Communications

6-45Hardware User Manual, 4th Edition, Rev. TProductivity3000

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-46 Productivity3000

Example Setup: Productivity3000® as EtherNet/IP Scanner
This example shows how to connect the Productivity3000 Scanner function to an EtherNet/
IP adapter device using Class1 IO Messaging. First, create an EtherNet/IP device in the
Hardware Configuration as seen below:

Configure the parameters to
match the settings of the Adapter
device. The image on right shows
the setup of the Input data.
The size, in this case, is dynamic
to the configuration of the
device. For this particular
example, we configured the
device in a manner that allows
it to publish 8 bytes of data for
Input. Many devices will have a
fixed configuration that should be
published in the manufacturer’s
documentation.

Chapter 6: Communications

6-47Hardware User Manual, 4th Edition, Rev. TProductivity3000

The Output data must also
be configured. Its data is
also dynamic based upon the
configuration. In our example,
we configured the device in a
manner that caused it to require
8 bytes of Output data.

The image on left shows the setup for the
Configuration data. The Configuration
data, for most devices, is a fixed size. Some
devices will require that the Configuration
data Connection Point be included in the
Forward Open message (as shown on
left) even if the size is 0. Some devices
will require that the Configuration data
Connection Point not be in the Forward Open
and the checkbox option in the image below
would need to be de-selected.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-48 Productivity3000

The following example shows how to connect the Productivity3000® Scanner function to
an EtherNet/IP adapter device using Class 3 Explicit Messaging. As with IO Messaging, an
EtherNet/IP device must be created in the Hardware Configuration as seen below:

Explicit Messages can be performed in 2 ways: Unconnected or Connected (Class 3). The
advantage of using Unconnected messaging is it allows more discrete control of each
request. The disadvantage of Unconnected messaging is that Unconnected messages have
a lower priority and will take longer to get serviced on some devices. Connected messages
get serviced faster since there is a connection established to the device. If Connected
messaging is desired, create an Explicit Message tab as shown in the image above. If
Unconnected messaging is desired, do not create an Explicit Message tab. Only fill out the
information in the upper portion of the EtherNet/IP Client Properties window.

Chapter 6: Communications

6-49Hardware User Manual, 4th Edition, Rev. TProductivity3000

Once the desired parameters have been entered, the device may now be referenced in
the Explicit Message Instruction. If Unconnected messaging has been selected, choose
the Unconnected MSG option in the Connection drop down box. If Connected messaging
has been selected, choose the Explicit Message that was configured in the EtherNet/
IP Client Properties window in the Connection drop down box. The rest of the settings
should be matched to the specifications documented by the manufacturer. An example
for requesting the Identity of a device is shown below. The data array configured for this
function must be sufficient in size to hold the returned data from the device for this object.
Data can also be written to the device if it supports an object for this purpose. If data is
being written, enable the Output selection and specify the data array and size required by
that device’s object.

Troubleshooting Tips:
1. Use the diagnostic tags in the Hardware Configuration

and Explicit Message Instruction:
• As explained previously in the Network Layer Chart section, there are

multiple layers of messaging involved with EtherNet/IP. If it appears that the
Productivity3000 is not communicating with another EtherNet/IP device, there
are diagnostic tags available to narrow down which layer of the protocol is
preventing successful communications.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-50 Productivity3000

a. At the TCP layer, there is a TCP Connected field that will expose the status of the
TCP/IP connection when a tag is populated in this field.

b. There is an Adapter Name field for a String tag and a Vendor ID field
for an Integer tag. Both of these fields can help to identify whether the
Productivity3000 is connected to the correct device or not.

c. At the CIP layer, there is a Connection Online field for a Boolean tag.
d. There are three additional fields to help determine why the CIP session might

not be successful: General Status for an Integer tag, Extended Status for an
Integer Data Array and Status Description for a String tag.

2. Use the TCP connected tag:
• Step 1 is to check the TCP Connected tag. If the connection has been enabled

(by turning on the tag configured in the Enable field or triggering an Explicit
Message instruction with an Unconnected MSG specified) and the TCP
Connected tag is not true, check the following items:
a. Cabling. Ensure that all of the cables are connected and in good shape. In

most cases, the Ethernet port that the cable is connected to should indicate
a Link Good LED. Ensure that any interim Ethernet switches are powered up
and functioning and that the end device is powered up and functional.

b. IP address and correct subnet. Check that the IP address entered into the IP
Address field is the correct address for the device that you are connecting
to. Also check that the EtherNet/IP device’s IP address and subnet mask is
compatible with the IP address and subnet mask of the Productivity3000.
If there are any routers in between the two, ensure that a proper default
gateway that matches the router’s IP address is configured. If you are
unfamiliar with proper IP addressing and subnet configuration, consult with
the network administrator for guidance.

c. TCP Port number. The default listening TCP port number for EtherNet/IP is
44818. Check that the target device is listening on this specific port number.
If it is not, change the value in TCP Port Number field to the appropriate
value. If there are interim router devices that are using port forwarding,
ensure that the router is properly configured for this setup.

NOTE: Attempting to do IO Messaging across routers (different subnets) is unlikely to be successful.
IO Messaging uses multicast messaging in many cases and the Port number is not necessarily
fixed when the IO Messaging is established (the Forward Open message has the ability to
‘negotiate’ the port number used for the IO Messages).

d. Adapter Name and Vendor ID. If the network contains many EtherNet/
IP devices and these devices may not necessarily be connected to the
Productivity3000, it may be a good safeguard to check the Adapter Name
and Vendor ID returned and verify that these devices are the correct devices
to connect to.

3. Use the Connection Online and Error tags:
• If the TCP Connected tag is true and the Adapter Name and Vendor ID look

correct, the next tags to look at are the Connection Online, the General Status,
the Extended Status and the Status Description.

• If the Enable tag is true and the Connection Online tag is not true, check the
General Status value along with the Extended Status value(s) and the Status
Description. If the General Status value and the Extended Status value(s) are
part of the defined errors from the ODVA specification,

Chapter 6: Communications

6-51Hardware User Manual, 4th Edition, Rev. TProductivity3000

the Status Description should also return a more descriptive String. Once
these errors are known, it may possible to very simply make the adjustment in
the settings to correct the issue. If it is not obvious from the description, first
check the manufacturer’s documentation for corrective action in this particular
scenario.

• If the manufacturer’s documentation doesn’t give corrective action, check the
EtherNet/IP Error Code List in this chapter for possible solutions.

NOTE: This may not always solve the problem as each device manufacturer may publish the error
for slightly different reasons.

• If the Connection Online tag is true and the data being received is different
than what is expected, verify that the correct Connection Point values and/or
Class, Instance, Attribute values are configured. There may be multiple areas
of available data in that device. Verify that the correct data types are being
used for both sides. If the data types are mismatched, this may make the data
‘appear’ to be incorrect.

• Another great tool that can be used is Wireshark. Wireshark is a free network
analyzer tool that can be downloaded from www.wireshark.net .

NOTE: Using this tool implies some knowledge of how networking protocols function. Using
Wireshark will also require that you have a true Ethernet hub (not an unmanaged switch) or a
managed switch with Port mirroring capability.

You may also use the following basic steps to check your Ethernet IP Setup.
Ethernet IP I/O Message Troubleshooting:

1. Does the IP Address set up in the Scanner match the Adapter IP Address?
2. Is the enable tag entered into the Scanner turned ON?
3. Does the connection point entered into the I/O Message Data

Block match the connection point of the Adapter?
4. Does the number of elements match the Adapter?
5. Does the data type match the Adapter?
6. Steps 4 & 5 are important because the number of bytes being read from

or written to the Adapter have to match the Adapter bytes allocated.
Ethernet IP Explicit Message Troubleshooting:

1. Does the IP Address set up in the Scanner match the Adapter IP Address?
2. Is the enable tag entered into the Scanner turned ON when

not using the Unconnected MSG connection type?
3. Make sure the logic for the EtherNet/IP Explicit Message

(EMSG) is TRUE so the instruction is enabled.
4. When using Get or Set single attributes in the Service field make

sure the Instance ID matches the Instance ID of the Adapter.
5. When using Generic in the Service field make sure the Service ID, Class

ID, Attribute ID and Instance ID match the Adapter settings.
6. Does the number of elements match the Adapter?
7. Does the data type match the Adapter?

• Steps 6 & 7 are important because the number of bytes being read from or
written to the Adapter have to match the Adapter bytes allocated.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-52 Productivity3000

ProNET
Productivity Network (ProNET) provides the ability to share data with other P-Series
CPU’s, This can easily be accomplished using the Productivity Network (PNET) setup in the
Hardware Configuration window used to join a data sharing network consisting of other
P-Series controllers.
Each member of the data sharing network receives data from all of the other P-Series
controllers on that data sharing network. Each node can optionally send data to the other
nodes of the data sharing network by electing to “publish” data.
The ProNET configuration uses UDP broadcast packets to publish the blocks of data to the
network. One caveat with the use of broadcast packets is that it limits the scope of the
shared data network to the local broadcast domain.
ProNET uses the verbs ‘publishing’ and ‘subscribing’ to describe how the controller data is
exchanged with other P-Series controllers on the data sharing network.
Publishing is analogous to sending data, and is done only if ProNET is configured to
‘publish’ one or more of its assigned tags. If so configured, the P-Series controller will
broadcast a packet that contains the data from the selected tags.
Subscribing is analogous to receiving data, and is accomplished by ‘subscribing to’ a
publisher’s global ID of any P-Series CPU on the data sharing network set up to publish its
data.

Chapter 6: Communications

6-53Hardware User Manual, 4th Edition, Rev. TProductivity3000

The ProNET configuration works with a 1D array tag(s) that can contain up to 65535
elements, however you are limited to 32 total 32-bit elements, 64 total 16-bit elements,
or 128 total 8-bit or Boolean elements of data per publisher array data type. These tags
provide the local storage for the data sent and received over the data-sharing network.

When the input logic to the ProNET configuration is Enabled, it operates at a fixed rate of
10 times per second (100ms). The instruction will publish all of the elements of the array
that it is configured to publish, and will process any ProNET nodes that it receives. When
the input logic is OFF, (the device is disabled), it DOES NOT publish any of its tags and
DOES NOT process any ProNET nodes that it receives.

Custom Protocol over Ethernet Functionality
Besides Modbus RTU, EtherNet/IP, and ProNET the Productivity1000 system has the ability
to communicate via Ethernet with other devices using the Custom Protocol over Ethernet
(CPoE).
Custom Protocol over Ethernet
The Custom Protocol is a HEX based protocol used to communicate with devices that do
not support one of the other protocols on Productivity1000. There are two steps to initiate
communications via the Custom Protocol over Ethernet:

• First you must set up a device in the hardware configuration under the CPoE tab.
• Then you must use the Custom Protocol Ethernet (CPE) instruction to initiate

messages.

NOTE: The message size for each data type is limited to 128 bytes regardless of the defined array
size.

Data Type Number of
Elements

Boolean 128

Integer 8-Bit 128

Integer 16-Bit 64

Integer 32-Bit 32

Integer 64-Bit 32

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-54 Productivity3000

Hardware Configuration
First you must set up a device to talk to in the CPoE tab of the hardware configuration. This
will Require you to:

• Enter a Device Name
• Enter the IP Address of the device you wish to communicate with.
• Enter the port number of the device.
• Enter an Enable tag to enable the device if using TCP.

• Choose whether you wish to Use the PLC as the master or the slave device via
TCP connection

• Choose whether you wish to use a UDP connection.
• Enter tags for status of this device for troubleshooting (Example below shows

the Structure method used).

Chapter 6: Communications

6-55Hardware User Manual, 4th Edition, Rev. TProductivity3000

Custom Protocol Ethernet Instruction
Next you must use the Custom Protocol Ethernet instruction in ladder.

1. The instruction can be chosen Receive or Send messages to the Custom Device.
2. The user can choose to use:

• A table with tags that allow the user to send a specific data.
• An array tag that is numerical can be used to Send/Receive from.
• A string tag that contains an ASCII string to be sent or string location to receive

characters to.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-56 Productivity3000

Communications: Remote I/O and GS-Drives
Things To Consider for the design of Remote I/O and GS-Drives

It is important to understand that only one Remote I/O network can be on an
unmanaged switch. If two or more Remote I/O networks are mixed into the same
physical LAN (local area network), duplicate IP addressing will occur and the system will
not function properly. Multiple Remote I/O networks can be used on a managed switch
using the VLAN feature to create a virtual separation of the different networks, but
multicasting messages are necessary for the network to function properly. Care must be
taken when designing a system this way (using a managed switch).
Even if only one Remote I/O network is being used in a facility, it is strongly
recommended to keep it on a dedicated network, physically isolated from other
networks. As mentioned above, the Productivity3000 Remote I/O network makes use of
multi-casting messages and many devices will not function properly in this situation.
The GS Drive configuration does not use multicasting in its setup but there are some
initial UDP broadcast messages that occur upon discovery when initiated from the
software and at power up. This should be considered if installing the GS Drive network
with other devices.

C-more Panel

GS-EDRV100

GS-EDRV100

P3-550(E)

P3-RS

P3-RS

GS-
Drive

GS-
Drive

GS-
Drive

Stride
Ethernet
Switch

Stride
Ethernet
Switch

Modbus
TCP Device

P3-550(E)

GS-EDRV100

Chapter 6: Communications

6-57Hardware User Manual, 4th Edition, Rev. TProductivity3000

Configuration of Remote Slaves

The Productivity3000® Remote I/O is very easy to configure. Each P3-RS or P3-RX Remote
Slave module’s address is set by rotary switches on the front of the module. The X1
switch is used to set the least significant digit and the X10 switch is used to set the most
significant digit. So if the X10 switch were set to 2 and the X1 switch were set to 4, the
Slave Address of that module would be 24. Valid addresses are 01-99; 00 is not valid. Each
slave module must have a unique address and up to 16 slave units are allowed on a single
system.

The address rotary switches are only read by the P3-RS/RX at power up. Power must be
cycled after an address change for it to take effect. Connect a straight through (patch)
Ethernet cable from the front of the P3-RS/RX module to an Ethernet switch. Connect a
straight through cable from the P3-550(E) Local Ethernet (Remote I/O) port (lower Ethernet
port) to the same switch. Open up the Productivity Suite Programming software and
connect to the P3-550(E). Once the software is connected, open Hardware Configuration.
Select the “Read Configuration” button in the upper left hand corner of this dialog and the
P3-550(E) will automatically discover the slave modules connected to the switch and return
all found P3-RS/RX modules and their configurations (bases and I/O modules).

CPU

NOTE: The P3-RS module is discontinued as of 6/20. Please use P3-RX as a replacement.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-58 Productivity3000

There are two fields that can be configured in regards to connectivity to the slave modules
(see the Local Ethernet Port Settings section of this chapter for a more detailed explanation
of these settings). The above diagram shows the CPU hardware configuration popup
where these settings can be found.

1. Timeout between data query and response: This is the time allowed (in 10 millisecond
units) between when the CPU sends a message to the P3-RS/RX and when a response
is required. If the CPU does not receive the response within the time specified, the
outcome will depend on how the P3-RS/RX and its I/O modules are configured:

CAUTION: If a timeout occurs and a module within a P3-RS/RX base or expansion
base connected to the P3-RS/RX has the “Automatic Module Verification” selection
enabled, the CPU will go out of run mode and a critical error will be generated.

Chapter 6: Communications

6-59Hardware User Manual, 4th Edition, Rev. TProductivity3000

• If a timeout occurs but all of the modules within the P3-RS/RX base or
expansion bases connected to the P3-RS/RX have the “No Verification and
Enable Hot Swap” selection enabled and the P3-RS/RX module has the “Do
not Detect if the Remote Base Group is Disconnected” selection enabled (see
above), the CPU will remain in Run and a non-critical error will be generated.

CAUTION: If a timeout occurs and the P3-RS/RX module has the “Automatic Remote
Base Group Detection” selection enabled, the CPU will go out of run mode and a
critical error will be generated.

2. Comm Heartbeat Value: (previous page graphic) This value is used to help the
P3-RS/RX determine that the P3-550(E) is no longer communicating to it. If
the P3-RS/RX module does not receive a message from the P3-550(E) within
the time frame specified in the “Comm Heartbeat Value” field in the P3-550(E)
configuration window, the P3-RS/RX module will turn off all of its outputs.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-60 Productivity3000

Configuration of GS-Drive Connections

GS Drive connections are set up
in a similar manner as the Remote
Slaves. Set a unique address for each
GS-EDRV100 using its DIP switches.
Or set the DIP switches to 0 and
select the address using NetEdit (free
download at
AutomationDirect.com). 01–64 are
valid addresses for a GS-EDRV100 in a
Productivity3000® system. Since the
DIP switch settings can only represent
00-63, setting a GS-EDRV100 to
address 64 must be done using
NetEdit.

After the GS-EDRV100 modules’ addresses have been set, be sure to connect the serial
cable that comes with the GS-EDRV100 to the GS-Drive serial port. The GS-EDRV100
will automatically configure the GS-Drive serial port to the correct settings. Once the
GS-EDRV100 is properly addressed and connected to the GS-Drive, connect a straight
through (patch) Ethernet cable from the Ethernet port of the GS-EDRV100 to an Ethernet
switch. Connect a straight through cable from the P3-550(E) Local Ethernet Port (Remote
I/O) to the same switch.
Open the Productivity Suite Programming software and go online with the P3-550(E).
Select Setup and then Hardware Configuration. Select the “Read Configuration” button in
the upper left hand corner of this dialog and the P3-550(E) will automatically discover all of
the GS-EDRV100s connected to the switch and display all found GS-Drives.

GS-EDRV100 DIP
Switches

Chapter 6: Communications

6-61Hardware User Manual, 4th Edition, Rev. TProductivity3000

Once the drives have been discovered, the configuration of each drive can be read and
written from the programming software.

To allow the P3-550(E) to automatically write the drive parameters on each CPU project
transfer and when the CPU is powered up, a setting must be configured in the P3-550(E)
project. Go to Tools and Options and select the “Project Transfer” tab. Select the “Transfer
GS drive configuration” as shown below. Drive parameters are ONLY transferred to the GS
Drive at project transfer or at boot up of the CPU.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-62 Productivity3000

To monitor the status of the connection between the P3-550(E) and the GS-EDRV100
modules, use the status bits of the GS Read and GS Write instructions as shown below. If
a Timeout occurs or an error is received, this can be monitored in the ladder code and
appropriate action can be taken.

The Communications Heartbeat function is configured differently for the GS Drives than
the Remote Slaves. Primarily because, as mentioned previously, there are two possible
communication paths that could be lost:

• P3-550(E) to GS-EDRV100.
• GS-EDRV100 to GS drive.

To configure the GS Drives to detect and react to loss of communications, there a set
of parameters that should be configured in the drive. The example below shows the
parameters for a GS1, 2, or 3 series drive.

• Parameter P9.03
determines what the
drive will do when
it detects loss of
communications.

• Parameter P9.04 enables
the transmission loss
detection feature.

• Parameter P9.05
determines the amount
of time the drive will
wait for a transmission
before assuming that
the link is lost and
react according to how
parameter P9.03 is
configured.

The GS-EDRV100 reads these
configured parameters and if they are configured for detecting communications loss, it will
also monitor for loss of communications on the Ethernet side. If communications are lost
on the Ethernet side, the GS-EDRV100 will shut down the GS Drive.

Chapter 6: Communications

6-63Hardware User Manual, 4th Edition, Rev. TProductivity3000

It is very important to note that if
the communications loss feature is
enabled; either a GS Drive Read or
GS Drive Write instruction needs
to be configured to communicate
to the GS-EDRV100 and GS Drive
at a poll rate that will prevent the
GS-EDRV100 and GS Drive from
detecting a loss of communication.

There is also a parameter
(P22.01) that can be monitored
to check the health of the
serial connection between
the GS-EDRV100 and the GS
Drive. This parameter can be
monitored in the ladder code
and appropriate action taken
if serial communications loss
is detected.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-64 Productivity3000

Communications: Port Configuration
The Communications Port Configuration
for any module containing comm
ports is accessed from the Hardware
Configuration window. For example, to
access the P3-550(E) communications port
configuration, first select the Local Base

Group from the Hardware Configuration
window by double left-clicking the Local
Base Group or by right-clicking the
Local Base Group and selecting Open
from the drop down menu as seen
above.

Then select the P3-550(E) by double left-clicking the CPU or by right-clicking the CPU and
selecting Open from the drop down list as seen above. This will display the P3-550(E)
configuration window seen here.

Although the following descriptions will focus on the P3-550(E) communications ports, the
settings also apply to any other module containing these ports (P3-530, P3-RS, P3-RX).

Chapter 6: Communications

6-65Hardware User Manual, 4th Edition, Rev. TProductivity3000

Communications: Port Configuration
Ethernet Configuration

Ethernet Ports: There are two 10/100Base-T Ethernet ports on the P3-550(E) CPU.
• External Ethernet: The upper Ethernet port is referred to as the “External Ethernet

Port”. This port can connect to Modbus TCP Client devices, Modbus TCP Server
devices and PCs running the Productivity3000 programming software.

• The External Ethernet Port is configured with an IP Address, Subnet Mask and
Default Gateway, allowing it to function seamlessly on a typical LAN network.

• Local Ethernet: The lower Ethernet (Remote I/O)port is referred to as the “Local
Ethernet Port”. This port functions as a Productivity3000 Remote I/O Client.
The Local Ethernet Port is not configurable and each CPU Remote I/O network
should be located on its own physical or logical network.

NOTE: Two CPU Remote I/O networks cannot co-exist on the same LAN.

External Ethernet Port Settings
• Port Name: Allows the entry of a unique Name for the External Ethernet Port.

This Name is referenced in the Communications instructions (MRX, MWX, RX,
WX) to select the Port to send the request from.

• Port Security Option: This Option can be used as a simple Security measure to
prevent Modbus TCP write requests from being accepted by the CPU. To allow
Reads and Writes, select Read/Write.

• TCP/IP Settings: The IP Setting of this Port may be changed in several ways:
• The Settings may be entered manually in the Choose CPU tool in the

Productivity Suite programming software. This allows the user to make
changes to the IP to allow connection by the computer running the
Productivity Suite programming software. Changes are sent using Multicast
Messages.

• The Settings can be saved as part of the project. This must be Enabled
in the P3-550(E) Hardware Configuration Settings by selecting Use the
Following (discussed on Item f below). If handled this way, the Settings
stored in the project will take effect at Project Transfer and at boot up only.
The Settings may be changed after boot up.

• Use Current Settings: When selected, Project Transfer or boot up will not make
changes to the TCP/IP Settings of the CPU.

• Use DHCP: This specifies that the CPU should request its IP Settings from a
DHCP Server on the network.

NOTE: If the CPU is set to use DHCP for it’s IP Settings it cannot, in all likelihood, be used as a
Modbus TCP Server.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-66 Productivity3000

• Use The Following: If this Option is selected, the CPU will set itself to the
specified project Settings upon Project Transfer or at boot up.

• IP Address: This field is where the IP Address is specified in Four Octets.
For Example: 192.168.1.5

• Subnet Mask: This field is where the Subnet Mask is specified in Four Octets (i.e.,
255.255.255.0). The Subnet Mask is used in conjunction with the IP Address to
configure a Logical Network.

• Default Gateway: This field is where the Default Gateway Address is specified in
Four Octets (i.e., 192.168.1.1). This is typically the IP Address of the router on
the network. If a target IP Address is specified in
an outgoing message from the CPU that is not in
the Local Subnet, the Default Gateway Address is
where this message will be sent.

• Timeout Between Data Query and Response: The
Time period specified in this field is the Time
between the queries sent from the CPU (via a
Communication instruction, such as a MRX, MWX,
RX or WX) and the Time a response from that
device is received. If the Response takes longer
to receive (or is not received) than the specified
Time period, a Timeout Error will occur for the
given instruction. Each instruction has a Timeout
Status bit that can be assigned to it. See the diagram shown here.

• Modbus TCP Port: This is the listening TCP Port Number for Modbus TCP
connections. If necessary, this value can be adjusted for advanced router
access. In most situations, this Number should be left at 502.

• Comm Heartbeat Value: This feature allows the ladder logic in the CPU to know
if a device has stopped communicating to the CPU. If a value is placed in this
field, the CPU will start a timer between each communication packet coming in
to the CPU. If a communication packet fails to be received by the CPU within
the specified time period, the System Bit Ethernet Heartbeat Timeout Bit will
become true.

Communications: Port Configuration

Chapter 6: Communications

6-67Hardware User Manual, 4th Edition, Rev. TProductivity3000

Remote Access Configuration

• Web Server Function: Allows the ability to make a non secure web connection
to the P3-550(E) in order to access the USB pen drive and view read-only
system tags. When enabled, a port number selection is required.
• Port: (Default 80) Allows user to set a port number ranging from 1-65535.

• Session Timeout: Allows the user to set a specific time limit (1-20 mins.) on
inactivity that will close the Web Server connection. If there is no activity
between the PC and the Web Server for the specified time limit, the connection
will close.

• Mobile Function: Enables Remote Access which allows the CPU Data Remote
Monitor App to monitor the selected tags.

• Password Option: Allows the user to set a password for access to the Web
Server.
• Enter an account name and password of up to a combination of 16

numbers and characters (can include special characters).

Remote Access Configuration
Local Ethernet Port Settings

• Timeout Between Data Query and Response: The Time period specified in this
field is the Time between the queries sent from the CPU (for Remote I/O Nodes,
PS-AMC modules and GS Drive Nodes) and the Time a Response from that
device is Received. If the Response takes longer to receive (or is not received)
than the specified Time period, a Timeout Error will occur for the given device
and an Error will be generated in the Error Log. For P3-RS/RX Timeouts, the
Error will be critical or non-critical, dependent on the Hot-Swap settings for that
unit, its I/O Modules and P3-EX Bases. See Modbus Server diagram shown on
previous page.

• Comm Heartbeat Value: This value specifies how long the Remote I/O Slaves
and PS-AMC modules should wait for a communication packet from the CPU. If
a communication packet is not received from the CPU within the specified time
period, all outputs on the Remote Slave will be turned OFF.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-68 Productivity3000

Serial Configuration

When the Serial Ports Tab is selected, the Serial Ports settings are displayed as shown
below.
There are two Serial Ports on the P3-550(E) CPU. There is an RS-232 Port with an RJ-12
connector and a 2-wire RS-485 Port with a removable three point terminal block. Both
Ports are capable of Modbus RTU Client (device that initiates communications requests)
and Server (device that responds to communications requests) communications. They are
also capable of ASCII outgoing strings and incoming strings.

RS-232 and RS-485 Port Settings
• Port Name: Allows the entry of a unique Name for the RS-232 and RS-485 Ports.

This name is referenced inside of the Communications instructions (MRX, MWX,
RX, WX) and ASCII instructions (AIN, AOUT, CPO, CPI) to select the Port to send
or receive the request.

• Port Security: This Option can be used as a simple Security measure to prevent
Modbus TCP write requests from being accepted by the CPU. To allow Reads
and Writes, select Read/Write.

• Protocol: This field determines whether the Port is used for Modbus RTU
communications, sending or receiving ASCII Strings or performing the Custom
Protocol function.

• Baud Rate: Choose the Baud Rate that your device and the CPU should
communicate in this field. The appropriate choice will vary greatly with
device, application and environment. The important point is that all devices
communicating on the network need to be set to the same Baud Rate. The
available Baud Rates are 1200, 2400, 9600, 19200, 33600, 38400, 57600 and
115200 bps.

Chapter 6: Communications

6-69Hardware User Manual, 4th Edition, Rev. TProductivity3000

• Node Address: This field is used only when the CPU is a Modbus RTU Server
device. This field is used to uniquely identify the CPU on the network. This
setting is also sometimes referred to as a Station Address. This field can be set
from 1 to 247.

• Parity: The Parity Bit is used as a simple, low-level form of Error Detection. All
devices on the network need to be at the same Parity setting. The appropriate
choice will vary with devices. Valid selections are None, Even and Odd.

• Data Bits: This field determines whether the communications packet uses
Seven Data Bits or Eight Data Bits. Eight Data Bits is the only valid selection for
Modbus RTU. Either Seven or Eight Data Bits can be selected when using ASCII
communications. Set this field to match the device that is connected to the
CPU.

• Stop Bits: This field determines whether the communications packet uses One
or Two Stop Bits. Set this field to match the device that is connected to the
CPU.

• Duplex Mode: In ASCII/Custom Protocol mode Half Duplex of Full Duplex can
be chosen.
• Half Duplex: When selected, the serial port can either transmit or receive,

but not both at the same time.
• Full Duplex: When selected, allows the serial port to transmit and receive

simultaneously. (Only available in ASCII/Custom Protocol).
• RTS Mode: Set the RTS mode to control the Request to Send signal out of the

Serial Port.
• RTS Off Delay Time (RS-232 Only): This Time period is the amount of Time

between the end of the data transmission to when the RTS signal is turned off.

RS-232 and RS-485 Port Settings

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-70 Productivity3000

• RTS On Delay Time (RS-232 Only): This Time period is the amount of Time
between when the RTS Signal is turned ON and the data transmission begins.
The diagram illustrates this. This setting may be needed when using media
converters (RS-232 to RS-485 converters) and/or radio modems. A delay may
be needed after the assertion of the RTS Signal and when the data transmission
begins for processing time in the device.

• Timeout Between Query and Response:
The Time period specified in this field is
the Time between the queries sent from
the CPU (via a Communication instruction,
such as an MRX, MWX, RX, or WX) and
the Time a Response from that device is
Received. If the Response takes longer
to receive (or is not received) than the
specified Time period, a Timeout Error
will occur for the given instruction. Each
instruction has a Timeout Status bit that
can be assigned to it.

• Modbus Character Timeout: The Modbus Character Delay Time is specified as
the Time between two bytes (or characters) within a given Modbus Message.
The Modbus RTU specification states that this time must be no more than 1.5
Character Times (real time based on Baud Rate). Sometimes delays do occur
between bytes when using radio modems, media converters, etc. This setting
allows some tolerance in these situations for the incoming Modbus Messages in
the CPU. The CPU will wait for the amount of time specified in this field before
discarding the incomplete packet.
If the CPU does not receive the
remainder of the Message within the
specified Time Frame, it will discard
the first portion of the Message
and wait for a new Message. The
diagram illustrates this. This
setting may be needed when using media converters (RS-232 to RS-422/485
converters) and/or radio modems. A delay may be needed at the end of the
data transmission for processing time in the devices.

RS-232 and RS-485 Port Settings

Chapter 6: Communications

6-71Hardware User Manual, 4th Edition, Rev. TProductivity3000

Response/Request Delay Response/Request Delay (RS-485 Only): This setting
is used when the CPU is a Modbus RTU Server or Client on the RS-485 Port.

The total Response Time can be up to the Total CPU Scan Time + the Value specified in
this field. When using 2-wire RS-485 communications, sometimes Echoes can occur since
both devices use the same differential signal pair to send and receive.

• If acting as a Server (on left below), upon receiving a Modbus Request, the CPU
will wait for the time period specified in this field before sending a Response.
This can be used with slow clients that need extra time to change from sending
to receiving.

• If acting as a Client (on right below), after receiving a Modbus Response, the
CPU will wait for the time period specified in this field before sending another
Request. This can be used to delay request messages in order to give extra
time for slow server devices.

Comm Heartbeat Value: This feature allows the ladder logic in the CPU to know if a device
has stopped communicating to the CPU. If a value is placed in this field, the CPU will start
a timer between each communication packet coming in to the CPU. If a communication
packet fails to be received by the CPU within the specified Time period, the System Bit
RS-232 Heartbeat Timeout Bit or RS-485 Heartbeat Timeout Bit will become true.

RS-232 and RS-485 Port Settings

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-72 Productivity3000

Communications: Error Codes
NOTE: The only time you will see Communications Error Codes is when the CPU is the Master of a
Communications Network.

To simplify the process of identifying a possible Error, the Productivity3000® CPU will
automatically report to a specific memory location an Error Code that helps identify the
existing issue. The Error Codes are reported in the Exception Response String Tag specified
in the instruction as shown below.

The Exception Response String field is available on the following instructions:

The Table shown below provides a list of Productivity3000 Communication Error Codes that
may be reported by the Productivity CPU.

• GS Drives Read • GS Drives Write • Modbus Read
• Modbus Write • Network Read • Network Write
• Dataworx Request

Productivity3000 Communication Error Codes
Error Code Description Suggested Fix

01 Function Code not supported Check instruction or connected device and cor-
rect Function code or address range selected.

02
Address out of range. This error is typically generated
when a Modbus address has been requested that
does not exist in the CPU.

Check instruction or connected device and cor-
rect Function code or address range selected.

03
Illegal Data Value. This error is typically generated
when the Modbus request sent to the CPU is formed
incorrectly.

Check the Modbus request against the Modbus
protocol specification (www.modbus.org) to
verify that it was formed correctly.

04 Device Failure Check connected device

06 Slave Device is Busy. This error is typically due to
excess communications to the EDRV. Slow down the poll rate in the GS instruction.

Chapter 6: Communications

6-73Hardware User Manual, 4th Edition, Rev. TProductivity3000

P3000 EtherNet/IP Error Codes

P3000 EtherNet/IP Error Codes
General
Status Error

Extended Status
Error Name Description P3000

Supported

0x01 0x0100
Connection In Use/
Duplicate Forward
Open

A connection is already established from the target
device sending a Forward Open request or the target de-
vice has sent multiple forward open request. This could
be caused by poor network traffic. Check the cabling,
switches and connections.

0x01 0x0103
Transport Class/
Trigger Combination
not supported

The Transport class and trigger combination is not
supported. The Productivity3000 CPU only supports
Class 1 and Class 3 transports and triggers: Change of
State and Cyclic.

0x01 0x0106 Owner Conflict

An existing exclusive owner has already configured a
connection to this Connection Point. Check to see if
other Scanner devices are connected to this adapter
or verify that Multicast is supported by adapter device
if Multicast is selected for Forward Open. This could
be caused by poor network traffic. Check the cabling,
switches and connections.

0x01 0x0107 Target Connection
Not Found

This occurs if a device sends a Forward Close on a
connection and the device can’t find this connection.
This could occur if one of these devices has powered
down or if the connection timed out on a bad connection.
This could be caused by poor network traffic. Check the
cabling, switches and connections.

0x01 0x0108 Invalid Network Con-
nection Parameter

This error occurs when one of the parameters specified
in the Forward Open message is not supported such as
Connection Point, Connection type, Connection priority,
redundant owner or exclusive owner. The Productivi-
ty3000 CPU does not return this error and will instead
use errors 0x0120, 0x0121, 0x0122, 0x0123, 0x0124,
0x0125 or 0x0132 instead.

0x01 0x0109 Invalid Connection
Size

This error occurs when the target device doesn’t support
the requested connection size. Check the documentation
of the manufacturer’s device to verify the correct Connec-
tion size required by the device. Note that most devices
specify this value in terms of bytes. The Productivity3000
CPU does not return this error and will instead use errors
0x0126, 0x0127 and 0x0128.

0x01 0x0110 Target for Connection
Not Configured

This error occurs when a message is received with
a connection number that does not exist in the target
device. This could occur if the target device has powered
down or if the connection timed out. This could be
caused by poor network traffic. Check the cabling,
switches and connections.

0x01 0x0111 RPI Not Supported

This error occurs if the Originator is specifying an RPI
that is not supported. The Productivity3000 CPU will
accept a minimum value of 10ms on a CIP Forward
Open request. However, the CPU will produce at the
specified rate up to the scan time of the installed project.
The CPU cannot product any faster than the scan time of
the running project.

CPU server currently supported errors
Note: Other adapters may generate this error
CPU server (will not generate error)

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-74 Productivity3000

P3000 EtherNet/IP Error Codes
General
Status Error

Extended Status
Error Name Description P3000

Supported

0x01 0x0112 RPI Value not ac-
ceptable

This error can be returned if the Originator is specifying
an RPI value that is not acceptable. There may be six
additional values following the extended error code with the
acceptable values. An array can be defined for this field
in order to view the extended error code attributes. If the
Target device supports extended status, the format of the
values will be as shown below:
• Unsigned Integer 16, Value = 0x0112, Explanation:

Extended Status code
• |Unsigned Integer 8, Value = variable, Explanation:

Acceptable Originator to Target RPI type, values: 0 = The
RPI specified in the forward open was acceptable (O ->
T value is ignored), 1 = unspecified (use a different RPI),
2 = minimum acceptable RPI (too fast), 3 = maximum
acceptable RPI (too slow), 4 = required RPI to corrected
mismatch (data is already being consumed at a different
RPI), 5 to 255 = reserved.

• Unsigned Integer 32, Value = variable, Explanation: Value
of O -> T RPI that is within the acceptable range for the
application.

• Unsigned Integer 32, Value = variable, Explanation: Value
of T -> O RPI that is within the acceptable range for the
application.

0x01 0x0113 Out of Connections

The Productivity3000 EtherNet/IP Adapter connection limit
of 4 when doing Class 3 connections has been reached.
An existing connection must be dropped in order for a new
one to be generated.

0x01 0x0114 Vendor ID or Product
Code Mismatch

The compatibility bit was set in the Forward Open message
but the Vendor ID or Product Code did not match.

0x01 0x0115 Device Type Mis-
match

The compatibility bit was set in the Forward Open message
but the Device Type did not match.

0x01 0x0116 Revision Mismatch
The compatibility bit was set in the Forward Open message
but the major and minor revision numbers were not a valid
revision.

0x01 0x0117
Invalid Produced or
Consumed Application
Path

This error is returned from the Target device when the Con-
nection Point parameters specified for the O -> T (Output)
or T -> O (Input) connection is incorrect or not supported.
The Productivity3000 CPU does not return this error and
uses the following error codes instead: 0x012A, 0x012B or
0x012F.

0x01 0x0118
Invalid or Inconsistent
Configuration Applica-
tion Path

This error is returned from the Target device when the
Connection Point parameter specified for the Configuration
data is incorrect or not supported. The Productivity3000
CPU does not return this error and uses the following error
codes instead: 0x0129 or 0x012F.

0x01 0x0119 Non-listen Only Con-
nection Not Opened

This error code is returned when an Originator device
attempts to establish a listen only connection and there is
no non-listen only connection established. The Productiv-
ity3000 CPU does not support listen only connections as
Scanner or Adapter.

Chapter 6: Communications

6-75Hardware User Manual, 4th Edition, Rev. TProductivity3000

P3000 EtherNet/IP Error Codes
General
Status Error

Extended Status
Error Name Description P3000

Supported

0x01 0x011A Target Object Out of
Connections

The maximum number of connections supported by this
instance of the object has been exceeded.

0x01 0x011B
RPI is smaller than
the Production Inhibit
Time

The Target to Originator RPI is smaller than the Target to
Originator Production Inhibit Time. Consult the manufactur-
er’s documentation as to the minimum rate that data can be
produced and adjust the RPI to greater than this value.

0x01 0x011C Transport Class Not
Supported

The Transport Class requested in the Forward Open is not
supported. Only Class 1 and Class 3 classes are supported
in the Productivity3000 CPU.

0x01 0x011D Production Trigger Not
Supported

The Production Trigger requested in the Forward Open is
not supported. In Class 1, only Cyclic and Change of state
are supported in the Productivity3000 CPU. In Class 3,
Application object is supported.

0x01 0x011E Direction Not Sup-
ported

The Direction requested in the Forward Open is not
supported.

0x01 0x011F
Invalid Originator
to Target Network
Connection Fixed/
Variable Flag

The Originator to Target fixed/variable flag specified in the
Forward Open is not supported . Only Fixed is supported in
the Productivity3000 CPU.

0x01 0x0120
Invalid Target to
Originator Network
Connection Fixed/
Variable Flag

The Target to Originator fixed/variable flag specified in the
Forward Open is not supported. Only Fixed is supported in
the Productivity3000 CPU.

0x01 0x0121
Invalid Originator to
Target Network Con-
nection Priority

The Originator to Target Network Connection Priority
specified in the Forward Open is not supported. Low, High,
Scheduled and Urgent are supported in the Productivi-
ty3000 CPU.

0x01 0x0122
Invalid Target to
Originator Network
Connection Priority

The Target to Originator Network Connection Priority
specified in the Forward Open is not supported. Low, High,
Scheduled and Urgent are supported in the Productivi-
ty3000 CPU.

0x01 0x0123
Invalid Originator
to Target Network
Connection Type

The Originator to Target Network Connection Type specified
in the Forward Open is not supported. Only Unicast is sup-
ported for O -> T (Output) data in the Productivity3000 CPU.

0x01 0x0124
Invalid Target to
Originator Network
Connection Type

The Target to Originator Network Connection Type specified
in the Forward Open is not supported. Multicast and
Unicast is supported in the Productivity3000 CPU. Some
devices may not support one or the other so if this error is
encountered try the other method.

0x01 0x0125
Invalid Originator
to Target Network
Connection Redun-
dant_Owner

The Originator to Target Network Connection Redundant_
Owner flag specified in the Forward Open is not supported.
Only Exclusive owner connections are supported in the
Productivity3000 CPU.

0x01 0x0126 Invalid Configuration
Size

This error is returned when the Configuration data sent in
the Forward Open does not match the size specified or
is not supported by the Adapter. The Target device may
return an additional Unsigned Integer 16 value that specifies
the maximum size allowed for this data. An array can be
defined for this field in order to view the extended error code
attributes.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-76 Productivity3000

P3000 EtherNet/IP Error Codes
General
Status Error

Extended
Status Error Name Description P3000

Supported

0x01 0x0127 Invalid Originator to
Target Size

This error is returned when the Originator to Target (Output data)
size specified in the Forward Open does not match what is in the
Target. Consult the documentation of the Adapter device to verify
the required size. Note that if the Run/Idle header is requested, it
will add 4 additional bytes and must be accounted for in the Forward
Open calculation. The Productivity3000 CPU always requires the
Run/Idle header so if the option doesn’t exist in the Scanner device,
you must add an additional 4 bytes to the O -> T (Output) setup.
Some devices may publish the size that they are looking for as an
additional attribute (Unsigned Integer 16 value) of the Extended
Error Code. An array can be defined for this field in order to view
the extended error code attributes.
NOTE: This error may also be generated when a Connection Point
value that is invalid for IO Messaging (but valid for other cases
such as Explicit Messaging) is specified, such as 0. Please verify
if the Connection Point value is valid for IO Messaging in the target
device.

0x01 0x0128 Invalid Target to
Originator Size

This error is returned when the Target to Originator (Input data) size
specified in the Forward Open does not match what is in Target.
Consult the documentation of the Adapter device to verify the re-
quired size. Note that if the Run/Idle header is requested, it will add
4 additional bytes and must be accounted for in the Forward Open
calculation. The Productivity3000 CPU does not support a Run/Idle
header for the T -> O (Input) data. Some devices may publish the
size that they are looking for as an additional attribute (Unsigned
Integer 16 value) of the Extended Error Code. An array can be de-
fined for this field in order to view the extended error code attributes.
NOTE: This error may also be generated when a Connection Point
value that is invalid for IO Messaging (but valid for other cases
such as Explicit Messaging) is specified, such as 0. Please verify
if the Connection Point value is valid for IO Messaging in the target
device.

0x01 0x0129 Invalid Configuration
Application Path

This error will be returned by the Productivity3000 CPU if a Config-
uration Connection with a size other than 0 is sent to the CPU. The
Configuration Connection size must always be zero if it this path is
present in the Forward Open message coming from the Scanner
device.

0x01 0x012A Invalid Consuming
Application Path

This error will be returned by the Productivity3000 CPU if the
Consuming (O -> T) Application Path is not present in the Forward
Open message coming from the Scanner device or if the specified
Connection Point is incorrect.

0x01 0x012B Invalid Producing
Application Path

This error will be returned by the Productivity3000 CPU if the
Producing (T -> O) Application Path is not present in the Forward
Open message coming from the Scanner device or if the specified
Connection Point is incorrect.

0x01 0x012C Config. Symbol
Does not Exist

The Originator attempted to connect to a configuration tag name
that is not supported in the Target.

0x01 0x012D Consuming Symbol
Does not Exist

The Originator attempted to connect to a consuming tag name that
is not supported in the Target.

0x01 0x012E Producing Symbol
Does not Exist

The Originator attempted to connect to a producing tag name that is
not supported in the Target.

0x01 0x012F
Inconsistent
Application Path
Combination

The combination of Configuration, Consuming and Producing appli-
cation paths specified are inconsistent.

Chapter 6: Communications

6-77Hardware User Manual, 4th Edition, Rev. TProductivity3000

P3000 EtherNet/IP Error Codes
General
Status Error

Extended Status
Error Name Description P3000

Supported

0x01 0x0130 Inconsistent Consume
data format

Information in the data segment not consistent with the
format of the data in the consumed data.

0x01 0x0131 Inconsistent Product
data format

Information in the data segment not consistent with the
format of the data in the produced data.

0x01 0x0132 Null Forward Open
function not supported

The target device does not support the function requested
in the NULL Forward Open request. The request could be
such items as “Ping device”, “Configure device application”,
etc.

0x01 0x0133
Connection Timeout
Multiplier not accept-
able

The Connection Multiplier specified in the Forward
Open request not acceptable by the Target device (once
multiplied in conjunction with the specified timeout value).
Consult the manufacturer device’s documentation on what
the acceptable timeout and multiplier are for this device.

0x01 0x0203 Connection Timed
Out

This error will be returned by the Productivity3000 CPU if
a message is sent to the CPU on a connection that has
already timed out. Connections time out if no message
is sent to the CPU in the time period specified by the RPI
rate X Connection multiplier specified in the Forward Open
message.

0x01 0x0204 Unconnected Request
Timed Out

This time out occurs when the device sends an Uncon-
nected Request and no response is received within the
specified time out period. In the Productivity3000 CPU, this
value may be found in the hardware configuration under the
Ethernet port settings for the P3-550(E) or P3-530.

0x01 0x0205
Parameter Error in
Unconnected Request
Service

This error occurs when Connection Tick Time/Connection
time-out combination is specified in the Forward Open
or Forward Close message this is not supported by the
device.

0x01 0x0206
Message Too
Large for Unconnect-
ed_Send Service

Occurs when Unconnected_Send message is too large to
be sent to the network.

0x01 0x0207
Unconnected
Acknowledge without
Reply

This error occurs if an Acknowledge was received but no
data response occurred. Verify that the message that was
sent is supported by the Target device using the device
manufacturer’s documentation.

0x01 0x0301 No Buffer Memory
Available

This error occurs if the Connection memory buffer in the
target device is full. Correct this by reducing the frequency
of the messages being sent to the device and/or reducing
the number of connections to the device. Consult the man-
ufacturer’s documentation for other means of correcting
this.

0x01 0x0302 Network Bandwidth
not Available for Data

This error occurs if the Producer device cannot support
the specified RPI rate when the connection has been
configured with schedule priority. Reduce the RPI rate or
consult the manufacturer’s documentation for other means
to correct this.

0x01 0x0303
No Consumed
Connection ID Filter
Available

This error occurs if a Consumer device doesn’t have an
available consumed_connection_id filter.

0x01 0x0304
Not Configured to
Send Scheduled
Priority Data

This error occurs if a device has been configured for a
scheduled priority message and it cannot send the data at
the scheduled time slot.

Chapter 6: Communications

Hardware User Manual, 4th Edition, Rev. T6-78 Productivity3000

P3000 EtherNet/IP Error Codes
General
Status Error

Extended Status
Error Name Description P3000

Supported

0x01 0x0305 Schedule Signature
Mismatch

This error occurs if the schedule priority information does
not match between the Target and the Originator.

0x01 0x0306 Schedule Signature
Validation not Possible

This error occurs when the schedule priority information
sent to the device is not validated.

0x01 0x0311 Port Not Available
This error occurs when a port number specified in a port
segment is not available. Consult the documentation of the
device to verify the correct port number.

0x01 0x0312 Link Address Not Valid
The Link address specified in the port segment is not
correct. Consult the documentation of the device to verify
the correct port number.

0x01 0x0315 Invalid Segment in
Connection Path

This error occurs when the target device cannot understand
the segment type or segment value in the Connection Path.
Consult the documentation of the device to verify the correct
segment type and value. If a Connection Point greater than
255 is specified this error could occur.

0x01 0x0316
Forward Close Ser-
vice Connection Path
Mismatch

This error occurs when the Connection path in the Forward
Close message does not match the Connection Path
configured in the connection. Contact Tech Support if this
error persists.

0x01 0x0317 Scheduling Not
Specified

This error can occur if the Schedule network segment or
value is invalid.

0x01 0x0318 Link Address to Self
Invalid

If the Link address points back to the originator device, this
error will occur.

0x01 0x0319 Secondary Resource
Unavailable

This occurs in a redundant system when the secondary
connection request is unable to duplicate the primary
connection request.

0x01 0x031A Rack Connection
Already established

The connection to a module is refused because part or all
of the data requested is already part of an existing rack
connection.

0x01 0x031B Module Connection
Already established

The connection to a rack is refused because part or all of
the data requested is already part of an existing module
connection.

0x01 0x031C Miscellaneous
This error is returned when there is no other applicable
code for the error condition. Consult the manufacturer’s
documentation or contact Tech support if this error persist.

0x01 0x031D Redundant Connec-
tion Mismatch

This error occurs when these parameters don’t match when
establishing a redundant owner connection: O -> T RPI, O
-> T Connection Parameters, T -> O RPI, T -> O Connec-
tion Parameters and Transport Type and Trigger.

0x01 0x031E
No more User Config-
urable Link Resources
Available in the
Producing Module

This error is returned from the Target device when no more
available Consumer connections available for a Producer.

Chapter 6: Communications

6-79Hardware User Manual, 4th Edition, Rev. TProductivity3000

P3000 EtherNet/IP Error Codes
General
Status Error

Extended Status
Error Name Description P3000

Supported

0x01 0x031F
No User Configurable
Link Consumer Re-
sources Configured in
the Producing Module

This error is returned from the Target device when no
Consumer connections have been configured for a Producer
connection.

0x01 0x0800 Network Link Offline The Link path is invalid or not available.

0x01 0x0810 No Target Application
Data Available

This error is returned from the Target device when the appli-
cation has no valid data to produce.

0x01 0x0811 No Originator Applica-
tion Data Available

This error is returned from the Originator device when the
application has no valid data to produce.

0x01 0x0812
Node Address has
changed since the
Network was sched-
uled

This specifies that the router has changed node addresses
since the value configured in the original connection.

0x01 0x0813 Not Configured for
Off-subnet Multicast

The producer has been requested to support a Multicast
connection for a consumer on a different subnet and does
not support this functionality.

0x01 0x0814 Invalid Produce/Con-
sume Data format

Information in the data segment not consistent with the
format of the data in the consumed or produced data. Errors
0x0130 and 0x0131 are typically used for this situation in
most devices now.

0x02 N/A Resource Unavailable
for Unconnected Send

The Target device does not have the resources to process
the Unconnected Send request.

0x04 N/A Path Segment Error in
Unconnected Send

The Class, Instance or Attribute value specified in the
Unconnected Explicit Message request is incorrect or not
supported in the Target device. Check the manufacturer’s
documentation for the correct codes to use.

0x09 Index to error Error in Data Segment

This error code is returned when an error is encountered
in the Data segment portion of a Forward Open message.
The Extended Status value is the offset in the Data segment
where the error was encountered.

0x0C Optional Object State Error

This error is returned from the Target device when the
current state of the Object requested does not allow it to be
returned. The current state can be specified in the Optional
Extended Error status field.

0x10 Optional Device State Error

This error is returned from the Target device when the
current state of the Device requested does not allow it to be
returned. The current state can be specified in the Optional
Extended Error status field.

0x13 N/A Not Enough Data Not enough data was supplied in the service request
specified.

0x15 N/A Too Much Data Too much data was supplied in the service request specified.

	Chapter 6 - Communications
	Communications: Capabilities
	Communication Ports

	Communications: Connectivity
	Communication Ports

	Communications ASCII and Custom Protocol Functionality
	ASCII Instructions
	Custom Protocol Instructions

	Communications: Ethernet
	TCP and UDP Port Numbers
	IP Addressing and Subnetting
	PC Setup
	PAC Setup
	TCP Connection Behavior with Modbus TCP and Network Instructions

	Communications Modbus Functionality
	Master/Client Function Code and Data Type Support
	Slave/Server Function Code and Data Type Support
	Assigning Modbus Addresses to Tags
	Modbus Options
	Modbus Instructions
	Network Instructions
	Automatic Poll versus Manual Polling and Interlocking
	Message Queue

	EtherNet/IP for the Productivity Series
	Terminology Definitions
	Network Layer Chart
	EtherNet/IP Data
	Class 1 and Class 3 Connections
	Example Setup: Productivity3000 as EtherNet/IP Adapter
	Example Setup: Productivity3000 as EtherNet/IP Scanner
	Troubleshooting Tips:
	Ethernet IP I/O Message Troubleshooting:
	Ethernet IP Explicit Message Troubleshooting:

	Communications: Remote I/O and GS-Drives
	Things To Consider for the design of Remote I/O and GS-Drives
	Configuration of Remote Slaves
	Configuration of GS-Drive Connections

	Communications: Port Configuration
	Ethernet Configuration
	External Ethernet Port Settings
	Local Ethernet Port Settings
	Remote Access Configuration
	Serial Configuration
	RS-232 and RS-485 Port Settings

	Communications: Error Codes
	P3000 EtherNet/IP Error Codes

