

Operating Instructions

OPT2507

Laser Distance Sensor Triangulation

Table of Contents

1	Gen	General				
	1.1	Information Concerning these Instructions	4			
	1.2	Explanation of Symbols	4			
	1.3	Limitation of Liability	5			
	1.4	Copyrights	6			
2	For	Your Safety	7			
	2.1	Use for Intended Purpose	7			
	2.2	Use for Other than the Intended Purpose	7			
	2.3	Personnel Qualifications	8			
	2.4	Modification of Products	8			
	2.5	General Safety Precautions	8			
	2.6	Laser Warnings	8			
	2.7	Approvals and Protection Class	ć			
3	Tech	nnical Data	10			
	3.1	General Data				
		3.1.1 Light Spot Diameter	11			
	3.2	Warm-Up Phase	11			
	3.3	Housing Dimensions	11			
	3.4	Control Panel	12			
	3.5	Complementary Products	12			
	3.6	Scope of Delivery	12			
4	Tran	sport and Storage	13			
	4.1	Transport	13			
	4.2	Storage	13			
5	Insta	nstallation and Electrical Connection				
	5.1	Installation	14			
	5.2	Adjustment	15			
	5.3	Electrical Connection	17			
	5.4	Diagnosis	18			
	5.5	Troubleshooting	19			
6	Sett	ings	20			
	6.1	Configuration with Push of Button / Teach-In	20			
	6.2	Analog Output	20			
7	Sett	ings via Menu	22			
8	Fund	unction Description				
	8.1	Sensor Functions	25			
	8.2	Display Functions	27			
	8.3	Input/Output Functions (E/A)				
	Ω Λ	8.3.1 Pin Function				
	8.4	Output Functions				
	8.5	Switching Point Functions (SSC1/SSC2)				
	8.6 8.7	Differential and Thickness Measurement				
	0.7	Difformation theoretical vicasurchicit	J			

	8.8	Condition Monitoring Functions	37 37
		8.8.2 Warning/Error Output Function	37
		8.8.3 Simulation Functions	38
9		tooth	
	9.1	weCon Installation	40
		Establishing Connection with Sensor	
	9.3	Using the weCon App	41
10		ink	
		Parameters	
	10.2	Condition Monitoring/Process Data	42
		10.2.1 Process Data In	42
		10.2.2 Process Data Out	42
		10.2.3 Events	
11	Mair	ntenance Instructions	44
12	Prop	per Disposal	45
13	Decl	arations of Conformity	46

1 General

1.1 Information Concerning these Instructions

- These instructions make it possible to use the product safely and efficiently.
- These instructions are an integral part of the product and must be kept on hand for the entire duration
 of its service life.
- Local accident prevention regulations and national work safety regulations must be complied with as well.
- The product is subject to further technical development, and thus the information contained in these operating instructions may also be subject to change. The current version can be found at www.automationdirect.com in the product's separate download area.

INFORMATION

The operating instructions must be read carefully before using the product and must be kept on hand for later reference.

1.2 Explanation of Symbols

- · Safety precautions and warnings are emphasized by means of symbols and signal words.
- Safe use of the product is only possible if these safety precautions and warnings are adhered to.

The safety precautions and warnings are laid out in accordance with the following principle:

SIGNAL WORD

Type and source of danger!

Possible consequences in the event that the hazard is disregarded.

→ Measures for averting the hazard.

The meanings of the signal words, as well as the scope of the associated hazards, are listed below:

A DANGER

This signal word indicates a hazard with a high degree of risk which, if not avoided, results in death or severe injury.

⚠ WARNING

This signal word indicates a hazard with a medium degree of risk which, if not avoided, may result in death or severe injury.

A CAUTION

This signal word indicates a hazard with a low degree of risk which, if not avoided, may result in minor or moderate injury.

NOTICE

This signal word draws attention to a potentially hazardous situation which, if not avoided, may result in property damage.

INFORMATION

Information draws attention to useful tips and suggestions, as well as information on efficient, error-free use.

1.3 Limitation of Liability

- The product has been developed in consideration of the current state-of-the-art technology, as well as applicable standards and guidelines. Subject to change without notice.
- A valid declaration of conformity can be accessed at www.automationdirect.com in the product's separate download area.
- wenglor sensoric elektronische Geräte GmbH (hereinafter referred to as "wenglor") excludes all liability in the event of:
 - Non-compliance with the instructions
 - Use of the product for purposes other than those intended.
 - Use by untrained personnel.
 - Use of unapproved spare parts.
 - Unapproved modification of products.
- These operating instructions do not include any guarantees from wenglor with regard to the described procedures or specific product characteristics.
- wenglor assumes no liability for printing errors or other inaccuracies contained in these operating instructions unless wenglor was verifiably aware of such errors at the point in time at which the operating instructions were prepared.

1.4 Copyrights

- The contents of these instructions are protected by copyright law.
- All rights are reserved by wenglor.
- Commercial reproduction or any other commercial use of the provided content and information, in particular graphics and images, is not permitted without previous written consent from wenglor.

2 For Your Safety

2.1 Use for Intended Purpose

Laser Distance Sensors Triangulation

Triangulation laser distance sensors work according to the principle of angle measurement, where the object's color, shape, and surface do not affect the measurement. Depending on the setting, they can be operated at very high speed or resolution. The measuring range can be selected individually within the sensor's working range.

This product can be used in the following industry sectors:

- Special-purpose mechanical engineering
- · Heavy mechanical engineering
- · Logistics
- · Automotive industry
- Food industry
- · Packaging industry
- · Pharmaceuticals industry
- Plastics industry
- · Woodworking industry

- · Consumer goods industry
- Paper industry
- · Electronics industry
- · Glass industry
- Steel industry
- Aviation industry
- · Chemicals industry
- · Alternative energies
- · Raw materials extraction

2.2 Use for Other than the Intended Purpose

- Not a safety component in accordance with 2006/42/EC (Machinery Directive).
- The product may be used only with accessories supplied or approved by wenglor, or in combination with approved products. A list of approved accessories and combination products can be found at www.automationdirect.com on the product detail page.

⚠ DANGER

Risk of personal injury or property damage in case of use for other than the intended purpose!

Use for other than the intended purpose may lead to hazardous situations.

→ Observe instructions regarding use for intended purpose.

2.3 Personnel Qualifications

- · Suitable technical training is a prerequisite.
- In-house electronics training is required.
- Trained personnel who use the product must have (permanent) access to the operating instructions.

A DANGER

Risk of personal injury or property damage in case of incorrect initial start-up and maintenance!

Personal injury and damage to equipment may occur.

→ Adequate training and qualification of personnel

2.4 Modification of Products

A DANGER

Risk of personal injury or property damage if the product is modified!

Personal injury and damage to equipment may occur. Noncompliance may result in loss of the CE and/or UKCA mark and voiding of the warranty.

→ Modification of the product is not permitted

2.5 General Safety Precautions

INFORMATION

These instructions are an integral part of the product and must be kept on hand for the entire duration of its service life.

In the event of possible changes, the current version of the operating instructions can be found at www.automationdirect.com in the product's separate download area.

Read the operating instructions carefully before using the product.

Protect the sensor against contamination and mechanical influences.

2.6 Laser Warnings

Laser Class 1 (EN 60825-1)

Applicable standards and safety regulations must be observed.

2.7 Approvals and Protection Class

NOTICE

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

This device complies with part 15 of the FCC Rules.

Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

3 Technical Data

3.1 General Data

Technical Data				
Optical Data				
Working Range	50 350 mm			
Measuring Range	50 350 mm			
Reproducibility maximum	100 μm			
Reproducibility: 1 Sigma	10 μm			
Linearity Deviation	300 μm			
Light Source	Laser (red)			
Wavelength	655 nm			
Service Life (T = +25 °C)	100000 h			
Laser Class (EN 60825-1)	1			
Max. Ambient Light	20000 Lux			
Light Spot Diameter	See section Light Spot Diameter [▶ 11]			
Electrical Data				
Supply Voltage	18 30 V DC			
Current Consumption (Ub = 24 V)	< 60 mA			
Measuring Rate	2500 /s			
Response Time	< 0.5 ms			
Temperature Drift	< 20 μm/K			
Temperature Range	-30 60 °C			
Analog Output	420 mA			
Short Circuit and Overload Protection	yes			
Reverse Polarity Protection	yes			
Interface	IO-Link V1.1			
Baud Rate	COM3			
Protection Class	III			
FDA Accession Number	2310674-000			
Mechanical Data				
Setting Method	(OLED)/Bluetooth menu			
Housing Material	Aluminum, anodised			
	Plastic, PMMA			
Optic Cover	Plastic, PMMA			
Degree of Protection	IP67			
Connection	M12 × 1; 4/5-pin			
Contains FCC ID: 2A3OLDC1392	X			
Output Functions				
Output	Analog Output			
Technical Safety Data				
MTTFd (EN ISO 13849-1)	408.4 a			

NOTICE

The information on accuracy (linearity deviation, reproducibility and temperature drift) refers to the measured values transmitted via IO-Link.

If an analog output is used, its deviation must be taken into account when considering accuracy. The maximum deviation here is:

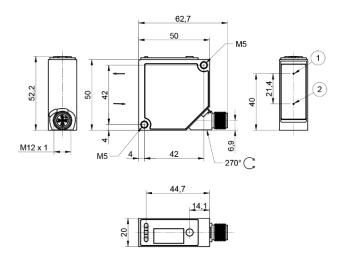
Analog output 0...10 V: +/-15 mV at >5 kOhm load

Analog output 4...20 mA: $\pm -25 \mu A$ at 0...500 ohm load

3.1.1 Light Spot Diameter

Working Distance	50 mm	200 mm	350 mm
Light Spot Diameter	1,5 mm	1 mm	1 mm

3.2 Warm-Up Phase

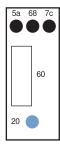

The warm-up phase typically lasts 5 minutes. After this time, the sensor delivers the specified values of the linearity deviation.

NOTICE

Specifications correspond to measured value without load. For all variants, the specification may differ due to the load on the output.

3.3 Housing Dimensions

1 = emitted light


2 = receiver diode

M4 screw = 1 Nm

M5 screw = 2 Nm

3.4 Control Panel

5a = switching status display, A1

7c = analog output O display

20 = enter key

60 = display

68 = supply voltage indicator

3.5 Complementary Products

wenglor offers you the right connection and mounting technology as well as other accessories for your product. You can find this at www.automationdirect.com on the product details page at the bottom.

3.6 Scope of Delivery

- Sensor
- Safety precaution
- BEF-SET-02 mounting set

4 Transport and Storage

4.1 Transport

Upon receipt of shipment, the goods must be inspected for damage in transit. In the case of damage, conditionally accept the package and notify the manufacturer of the damage. Then return the device, making reference to damage in transit.

4.2 Storage

The following points must be taken into consideration with regard to storage:

- Do not store the product outdoors.
- Store the product in a dry, dust-free place.
- Protect the product against mechanical impacts.
- Protect the product against exposure to direct sunlight.

NOTICE

Risk of property damage in case of improper storage!

The product may be damaged.

→ Storage instructions must be complied with.

5 Installation and Electrical Connection

5.1 Installation

- Protect the product from contamination during installation.
- Observe all applicable electrical and mechanical regulations, standards and safety rules.
- · Protect the product against mechanical influences.
- Make sure that the sensor is mounted in a mechanically secure fashion.
- Install the sensor by means of the mounting hole with M4 screws (included in the scope of delivery).

• Alternatively, the sensors can also be attached using M5 screws (not included in the scope of delivery) via the thread built into the housing.

- Do not exceed max. tightening torque:
 - If using M4 screws: 1 NmIf using M5 screws: 2 Nm

NOTICE

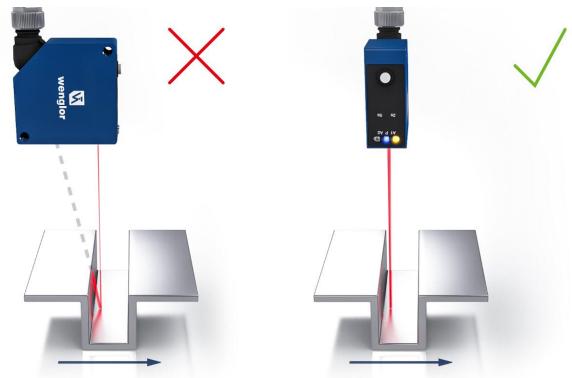
Risk of property damage in case of improper installation!

The product may be damaged!

→ Comply with installation instructions.

⚠ CAUTION

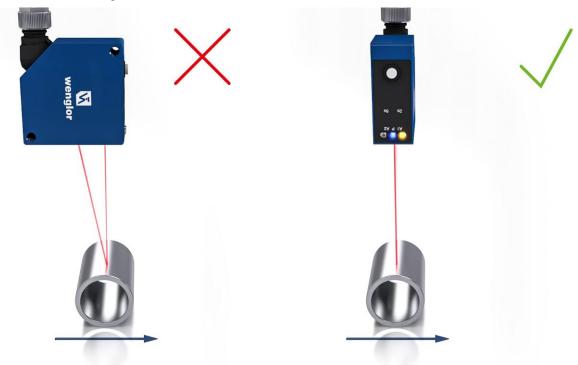
Risk of personal injury or property damage during installation!


Personal injury and damage to the product may occur.

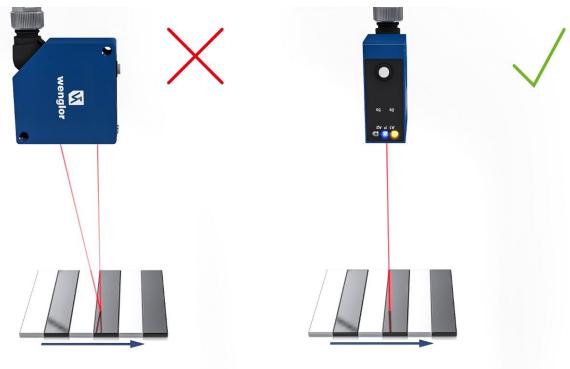
→ Ensure a safe installation environment.

5.2 Adjustment

When adjusting sensors, note the following instructions so that the most stable object detection/measurement can be achieved:


Steps/Edges/Depressions

If measuring directly next to steps/edges/depressions, make sure that the receiving beam is not covered by the step/edge. The same applies when measuring the depth of gaps and holes.


With holes, blind holes and edges in the surface of moving parts, the sensor must be positioned so that the edge does not obscure the laser dot.

Round, Glossy surfaces

With round, glossy surfaces, the sensor should be positioned on an axis with the round object in order to avoid reflection.

Measuring Objects with Evenly Positioned, Colored Edges

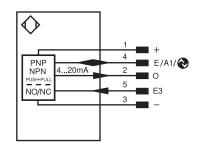
When oriented correctly, the influence on measuring accuracy is minimal. When oriented incorrectly, the different reflectivity of the various colors will result in deviations.

Moving Measuring Objects

When measuring a moving object, the object must be able to move transversely to the sensor. This prevents shadows and direct reflection to the receiver.

5.3 Electrical Connection

- Wire the sensor in accordance with the connection diagram.
- Switch on the supply voltage (see section Technical Data [▶ 10]).
- If using IO-Link, connect the sensor to 18...30 V DC.
- If not using IO-Link, connect the sensor to 10...30 V DC.
- The blue supply voltage indicator lights up.
- Adjust the sensor so that the light spot strikes the object to be detected/measured.


A DANGER

Risk of personal injury or property damage due to electric current.

Voltage-conducting parts may cause personal injury or damage to equipment.

→ The electric device may be connected by appropriately qualified personnel only.

242

1	brown	2	white
3	blue	4	black
5	gray		

Legend				Platinum measuring resistor
+	Supply Voltage +		nc	not connected
_	Supply Voltage 0 V		U	Test Input
~	Supply Voltage (AC Voltage)		Ū	Test Input inverted
Α	Switching Output	(NO)	W	Trigger Input
Ā	Switching Output	(NC)	W -	Ground for the Trigger Input
V	Contamination/Error Output	(NO)	0	Analog Output
⊽	Contamination/Error Output	(NC)	0-	Ground for the Analog Output
Е	Input (analog or digital)		BZ	Block Discharge
Т	Teach Input		AMV	Valve Output
Z	Time Delay (activation)		а	Valve Control Output +
S	Shielding		b	Valve Control Output 0 V
RxD	Interface Receive Path		SY	Synchronization
TxD	Interface Send Path		SY-	Ground for the Synchronization
RDY	Ready		E+	Receiver-Line
GND	Ground		S+	Emitter-Line
CL	Clock		÷	Grounding
E/A	Output/Input programmable		SnR	Switching Distance Reduction
②	IO-Link		Rx+/-	Ethernet Receive Path
PoE	Power over Ethernet		Tx+/-	Ethernet Send Path
IN	Safety Input		Bus	Interfaces-Bus A(+)/B(-)
OSSD	Safety Output		La	Emitted Light disengageable
Signal	Signal Output		Mag	Magnet activation
BI_D+/-	Ethernet Gigabit bidirect. data	line (A-D)	RES	Input confirmation
	Encoder 0-pulse 0-0 (TTL)	ED M	Contactor Monitoring	

ENARS422	Encoder A/Ā (TTL)
ENBRS422	Encoder B/B (TTL)
ENA	Encoder A
ENB	Encoder B
Амін	Digital output MIN
Амах	Digital output MAX
Аок	Digital output OK
SY In	Synchronization In
SY OUT	Synchronization OUT
Оцт	Brightness output
М	Maintenance
rsv	reserved
Wire Co	olors according to IEC 60757
BK	Black
BN	Brown
RD	Red
OG	Orange
YE	Yellow
GN	Green
BU	Blue
VT	Violet
GY	Grey
WH	White
PK	Pink
GNYF	Green/Yellow

5.4 Diagnosis

Indicator	Status	Meaning	
Supply voltage indicator		Sensor ready for operation	
Р		No voltage supply	
		Warning	
		LEDs for switching status indicators A1, A2 and analog display O are still working properly	
		Error	
		LEDs for switching status indicators A1, A2 and analog display O are not working properly	
		Sensor ready for Bluetooth connection	
Switching status indica-		Switching outputs active	
tor A1, A2		Switching outputs not active	
Analog indicator O		Object within set measuring range	
		Object outside set measuring range	
Localization		Localization function active	

□□□ = Not lit

= Permanently lit

= Flashing

5.5 Troubleshooting

Error	Possible cause	Elimination
Warning	Warning signal	Reduce distance between sensor and object
		Adjust angle of sensor to object
		Remove any contamination
	Undervoltage	Increase voltage supply to min. 18 V DC
	Ambient light	Adjust sensor orientation to interfering light source
	Temperature too high	Mount the mounting bracket as a heat sink
		Reduce load on outputs
	Temperature too low	Increase ambient temperature
Error	Short circuit	Check the electrical wiring and eliminate the short circuit
	Temperature error	Disconnect the sensor from the supply voltage and allow it to cool
		Mount the mounting bracket as a heat sink
		Reduce load on outputs
	Device error	Disconnect the sensor from the supply voltage and restart it
		Replace the sensor

INFORMATION

Required action in case of fault:

- 1. Shut down the machine.
- 2. Analyze and eliminate the cause of error with the aid of the diagnostics information.
- 3. If the error cannot be eliminated, please contact wenglor's support department.
- 4. Do not operate in case of indeterminate malfunctioning.
- 5. The machine must be shut down if the error cannot be definitively explained or properly eliminated.

A DANGER

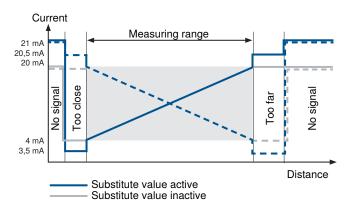
Risk of personal injury or property damage in case of non-compliance!

The system's safety function is disabled. Personal injury and damage to equipment may occur.

→ Required action as specified in case of fault.

6 Settings

The sensor can be adjusted via teach-in, IO-Link, wTeach2 and weCon. The different setting options are outlined below.


6.1 Configuration with Push of Button / Teach-In

This section describes the settings that can be configured directly on the sensor using the button. The settings can also be configured directly using the Enter key and without accessing the menu.

6.2 Analog Output

Analog Output Function

The sensor reads out its measured value as a linear proportional current or voltage value. The characteristic curve can be set within the entire measuring range by teaching in.

Substitute Values (Current Output Only)

By means of substitute values, the sensor is able to provide more precise diagnosis as to whether the analog signal corresponds to a valid measured value within the measuring range.

No signal: 21 mA

Rising Characteristic Curve

Object outside near measuring range: 3.5 mA Object outside far measuring range: 20.5 mA

Falling Characteristic Curve

Object outside near measuring range: 20.5 mA
Object outside far measuring range: 3.5 mA

The substitute values function can be deactivated via the menu, Bluetooth, or IO-Link.

Teach-In

The teach-In function can be used to scale the analog output and assign the min./max. values to measured distances. By default, 4 mA/0 V corresponds to the minimum measuring range, and 20 mA/10 V corresponds to the maximum measuring range.

Teach-In for 4 mA/0 V

- 1. Adjust the sensor so that the light spot strikes the object to be measured.
- 2. Press and hold the Teach-in key or the Enter key for 2 seconds until O starts to flash slowly.
- 3. Release the Teach-in key or the Enter key.
- The distance is taught in, and LED O flashes briefly twice in order to confirm successful teach-in.

Teach-In for 20 mA/10 V

- 1. Adjust the sensor so that the light spot strikes the object to be measured.
- 2. Press and hold the Teach-in key or the Enter key for 5 seconds until LED O starts to flash rapidly.
- 3. Release the Teach-in key or the Enter key.
- The distance is taught in, and LED O flashes briefly twice in order to confirm successful teach-in.

INFORMATION

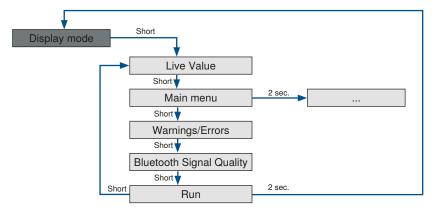
Depending on whether the smaller distance value is assigned to 4 mA/0 V or 20 mA/10 V, either a rising or a falling analog characteristic curve results. If teach-in is conducted without an object or if an object is too far from the sensor, the analog value is set to the maximum value of 20 mA/10 V and the Power LED lights up yellow. If an object that is too close is taught in, the analog value is set to the minimum value of 4 mA/0 V and the Power LED also lights up yellow. If there is an error during teach-in preventing it from being carried out, this is indicated by a red LED.

7 Settings via Menu

This section describes the settings that can be configured using the built-in OLED display. The menu is controlled by pressing the Enter key.

In Display mode, the current measured distance is shown.

Menu Control

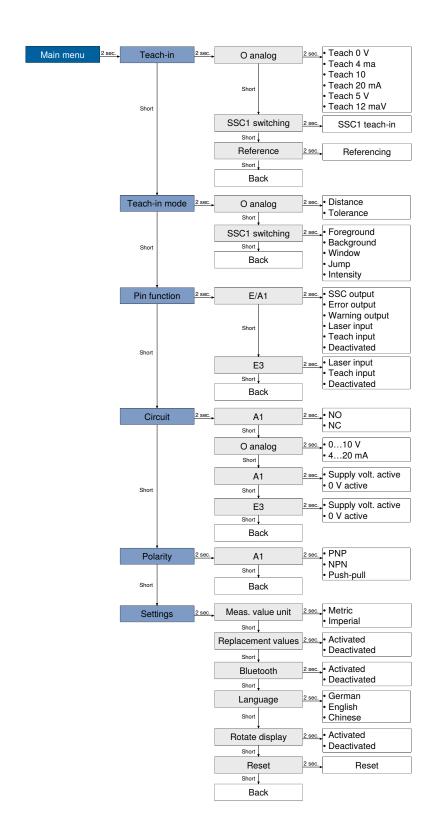

Pressing the Enter key navigates through the menu and applies settings.

Short-press in Display mode	Jump to menu	
Short-press	Next menu item	
Press button for 2 sec.	Selection	
Press button 5 sec.	Exits the menu, Display mode.	

Menu Structure

The menu is divided into 2 sections. The Info menu shows various status messages from the sensor. The Info menu also opens the main menu where the settings can be configured.

Info Menu



Live Value	653.20	This view is displayed after jumping to the Info menu. The current measured distance is displayed in combination with the measured value's unit.
Main Menu	Main Menu ○ • ○ ○ ○	Jumps to main menu to apply settings.

Warnings/Errors	⚠ Undervoltage ○○•○○	This view shows warnings or errors.
Bluetooth Signal Quality		This view shows the Bluetooth signal quality.
Display Mode	Run ○○○○ •	Returns to Display mode.

Main Menu

The corresponding functions are described in the Parameters [▶ 42] section.

8 Function Description

The functions described in the following section can be adjusted via wTeach or IODD per IO-Link, as well as via the weCon app per Bluetooth, and the basic functions via the Display menu.

8.1 Sensor Functions

Function	Possible settings	Default
Exposure mode	With black or glossy objects, it may be useful to increase the exposure time. Decreasing the exposure time can be useful if the sensor is aimed at very bright objects. The longer the exposure time, the lower the speed of the sensor.	Auto
	Auto	
	With the Adaptive Autoexposure function, the sensor automatically sets its exposure time or light pulse duration to the object to be detected up to a maximum value.	
	Fix	
	The exposure time is set via the fixed exposure time parameter, i.e., not automatically adjusted by the sensor	
Fixed	Used to manually set a fixed exposure time.	400 µs
exposure time	11,600 µs	
Maximum	Maximum exposure time in Auto mode.	400 μs
exposure time	11,600 µs	
Measured value filter	A bigger filter improves the sensor's reproducibility and smooths the signal waveform. The higher the filter number, the longer the sensor's response time when the measured values change. 0 = OFF	3
	19	
Offset	The Offset function is used to change the momentary mea-	0 μm
Chieci	sured value to a specified value. The switching thresholds and the analog measuring ranges are adapted along with this value. The offset value is added to the current distance.	о дин
Offset specification	Value to which the current measured value is to be set by a corresponding offset. The offset is calculated automatically. 50,000350,000 µm	0 μm
Apply offset specifi-	The current measured value is changed to the offset specified	0
cation	value	
	1= apply	
Distance range	A distance range in which signals are to be evaluated can be defined within the working range. Signals outside the set distance range are ignored and are not included in the signal evaluation. This means that ranges for which no usable signals are expected can be completely hidden.	Setting range
	This function can be used to suppress interfering signals, such as those produced by a glass disk, for instance.	
	Min. distance: working range	
	Max. distance: working range	
	Note!	

Function	Possible settings	Default
	Objects outside the set distance range are evaluated as	
	"No signal".	
	• If a distance range is set, a blind spot directly behind this range results. The sensor cannot detect any objects within	
	the blind spot. The size of the blind spot depends on the	
Sensitivity	reflectance of the interfering objects in the hidden area.	Standard
Sensitivity	The sensor has a very high sensitivity and can detect objects, measuring the distance to them, even when the signal is very weak. In applications where the object to be detected yields even weaker signals, e.g., due to large inclinations, it can be helpful to further increase the sensitivity or to amplify the optical signal.	Standard
	The higher the sensitivity, the more susceptible the sensor is to interference. The speed of the sensor is not reduced by the setting.	
	Standard	
	Corresponds to the default setting	
	High	
	Gain by factor 2	
	Maximum	
	Gain by factor 4	
Emitted light	The sensor's laser can be switched on or off.	On
	On	
	Laser on	
	Off	
	Laser off	
	The sensor no longer supplies a measured value.	
	Note!	
	If an input is set as a laser-off input, the emitted light can also be switched on and off via the input.	
	If the laser is switched off, the sensor behavior corresponds to the status "No signal."	
Localization	The supply voltage indicator of the sensor can be switched to flashing green. This allows the sensor to be easily located in a plant. On	Off
	The supply voltage LED flashes green.	
	Off	
	LEDs in normal function.	
Measured value unit	The measured distance can be output in micrometers or mils.	micrometer
	Micrometer	
	Distance values output in µm.	
	Mil	
	Distance values read out in mil.	
Bluetooth	The Bluetooth interface can be switched on/off.	On
	On	
DI:	Off	0,11
Bluetooth	The Bluetooth function can be password protected to prevent unauthorized access.	Off
Password Function	On	
FULLCHOLL		

Function	Possible settings	Default
	Off	
	Note!	
	Only the Bluetooth function is protected. Communication is possible via IO-Link or the OLED menu at any time.	
Bluetooth	Enter a Bluetooth password. To access the device using the	_
Password	Bluetooth app, enter this password in the app.	
	Note!	
	If the password has been forgotten, a new password can be assigned via IO-Link.	

8.2 Display Functions

Function	Possible settings	Default
Language	Selecting the display language	English
	German	
	English	
	Chinese	
Rotate display	Rotates the display 180°.	Off
	On	
	Off	

8.3 Input/Output Functions (E/A)

8.3.1 Pin Function

The pin function is used to define the function of pins I/O1 and I3, as these can be used for different functions.

Pin	Possible settings	Default
E/A1	Switching output	Error output
	Switching point SSC1 is assigned to the switching output.	
	Error output	
	The error output switches if one of the assigned errors occurs; see table Status messages [* 38]	
	Warning output	
	The warning output switches if one of the assigned warnings occurs; see table Status messages [> 38].	
	Laser-off input	
	See E3 for an explanation	
	Teach-in input	
	See E3 for an explanation	
	Deactivated	
	The pin is deactivated.	
E3	Laser-off input	Laser off
		Input

Pin	Possible settings	Default
	The sensor's emitted light is deactivated as long as the input is activated. The sensor then does not send a measured value and sets the status to "No signal".	
	Teach-In input	
	Teach-in	
	The outputs (switching outputs/analog output) can be set by following the same procedure as with the Teach-in key (see Configuration with Push of Button / Teach-In [▶ 20]). An activated input corresponds to a pressed Teach-in key.	
	Locking	
	If 1830 V DC is continuously applied to the teach-in input, the teach-in key is locked and protected against inadvertent changes, like the input signal.	
	Deactivated	
	The pin is deactivated.	

8.4 Output Functions

The output functions are used to set the physical outputs.

Digital Outputs

Function	Possible settings	Default
Polarity	PNP	PNP
	NPN	
	Push-pull	
Circuit	NO	NO
	Light switching (Normally Open)	
	The output is high when the condition has been satisfied, depending on settings (switching point, warning, error).	
	NC	
	Dark switching (normally closed)	
	The output is low when the condition has been fulfilled depending on the setting (switching point, warning, error).	
On-delay	010,000 ms	0 ms
Off-delay	010,000 ms	0 ms

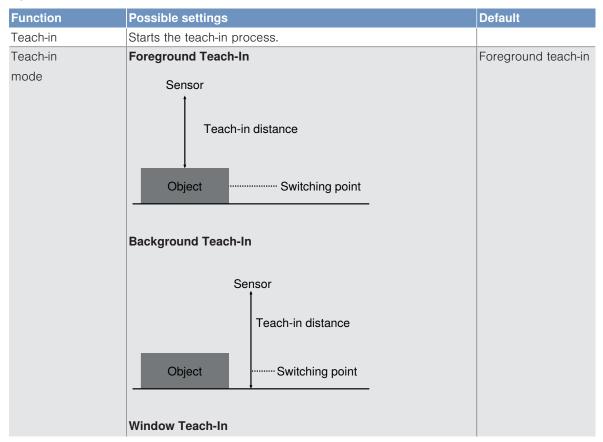
Analog Outputs

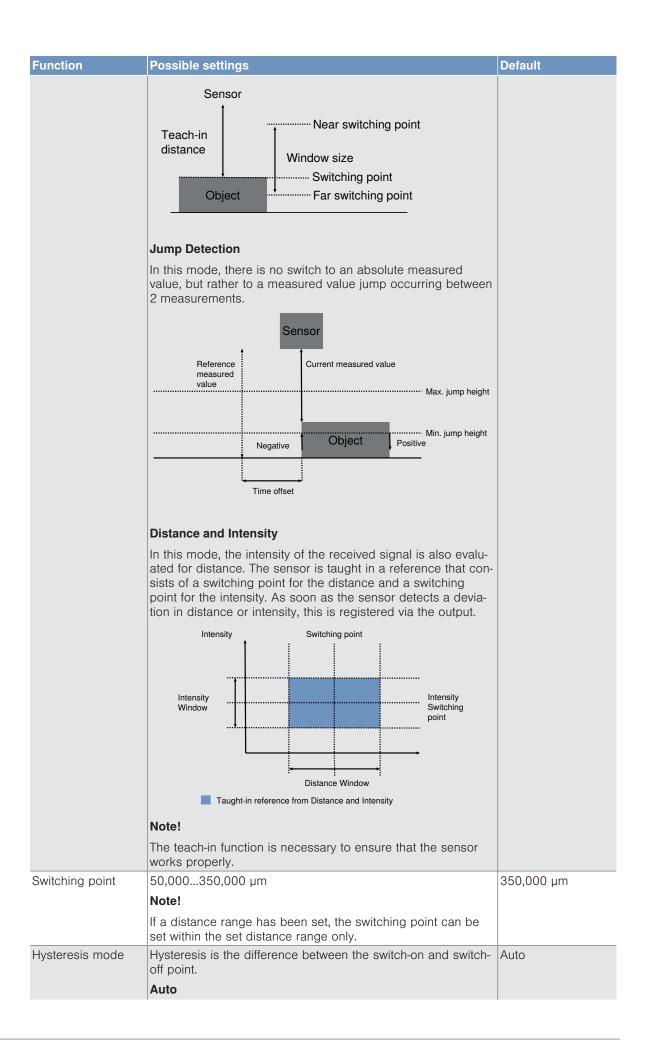
Function	Possible settings	Default
Teach-in	Starts the teach-in process.	
Teach-in mode	Distance A distance is taught in to the analog limit values, and the distance is output as a linearly proportional current or voltage value. Sensor 4 mA / 0 V 20 mA/0 V 20 mA/10 V	Distance
	Tolerance	

Function	Possible settings	Default
	A distance is taught in to the measuring range, serving as the measurement reference, for 5 V or 12 mA. The tolerance range is set around this value.	
	Pos. gradient: 4 mA / 0 V Neg. gradient: 20mA/0 V Tolerance range Sensor Pos. gradient: 4 mA / 0 V Neg. gradient: 20mA/0 V Sensor	
	12 mA/5 V	
0 V / 4 mA	In Distance teach-in mode	50,000 μm
	In Distance teach-in mode, the 0 V or 4 mA value is assigned to a distance within the measuring range.	
	Measuring range	
10 V / 20 mA	In Distance teach-in mode In Distance teach-in mode, the 10 V or 20 mA value is assigned to a distance within the measuring range.	350,000 μm
	Measuring range	
5 V / 12 mA	In Distance teach-in mode	200,000 μm
	In Tolerance teach-in mode, the 5 V or 12 mA value is assigned to a distance within the measuring range.	
	Measuring range	
Tolerance range	In Distance teach-in mode	150,000 μm
	The tolerance range is symmetrical around the 5 V / 12 mA point and defines the range while the measurement is taken.	
	1,000350,000 µm Note!	
	If the tolerance range extends beyond the limits of the measuring range, the corresponding analog values or Substitute values for are output outside the measuring range.	
	In Distance teach-in mode	Positive slope
istic	The characteristic indicates whether the analog value increases or decreases as the distance increases.	
	Positive slope	
	The analog value increases as the distance increases.	
	Negative slope	
	The analog value decreases as the distance increases.	
Analog mode	Current output	420 mA
	420 mA	
	Voltage output	
	010 V	
Analog Replacement values	The substitute values described in the section Settings – Analog output can be activated or deactivated.	Enabled
	Enabled	
	Sensor outputs substitute values.	
	Deactivated	
	Sensor does not use substitute values.	

Function	Possible settings	Default
	Note!	
	Function can only be used for current output.	

8.5 Input Functions


The input functions are used to set the physical inputs.


Function	Possible settings	Default
Input mode	Supply Voltage Active	Supply voltage ac-
	Function is triggered as soon as supply voltage is applied to the input.	tive
	Supply Voltage Inactive	
	Function is triggered as soon as 0 V is applied to the input or the input is opened.	

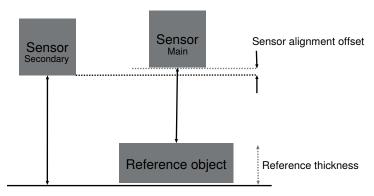
8.6 Switching Point Functions (SSC1/SSC2)

The switching point functions are used to set the two switching points, SSC1 and SSC2.

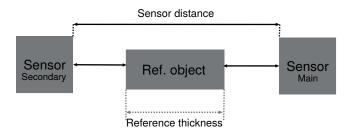
SSC1 and SSC2 initially only available via IO-Link. If E/A1 is configured as a switching output, SSC1 is assigned to it.

Function	Possible settings	Default
	The hysteresis is automatically calculated by the sensor so that it can be adjusted to best suit the respective situation. After a teach-in or changing the switching point, the hysteresis is recalculated and updated automatically under the Hysteresis parameter. The information given on the data sheet corresponds to the set switching point, e.g., switching point at 100 mm, hysteresis per data sheet < 0.5% hysteresis < 0.5 mm	
	The hysteresis is set to a fixed value under the Hysteresis parameter. This value is not adjusted automatically when teaching in or changing the switching point. A small hysteresis is recommended so that flat objects can be detected against a background. A larger hysteresis is recommended to ensure stable detection when conditions are variable.	
Hysteresis	Absolute value of the hysteresis in hysteresis mode Fix	1,000 µm
	4 μm300,000 μm	
~ ·	In teach-in mode, window teach-in	30 mm
window	Distance from the set center of the window to the window's switching point that is close to the sensor.	
	The window can be set so that it extends from the sensor's minimum setting range to its maximum setting range. The possible minimum and maximum settings result from the center of the window set in a particular instance.	
Far switching point	In teach-in mode, window teach-in	30 mm
window	Distance from the set center of the window to the window's switching point that is far away from the sensor.	
	The window can be set so that it extends from the sensor's minimum setting range to its maximum setting range. The possible minimum and maximum settings result from the center of the window set in a particular instance.	
Jump height min	In teach-in mode, jump detection	Automatic
	The min. jump height specifies the measured value jump from which a jump event should be detected.	
	In the "Automatic" setting, the sensor automatically calculates the smallest possible jump.	
	0 = Automatic	
	6 µm300,000 µm	
Max. jump height	In teach-in mode, jump detection	no restriction
	The max. jump height specifies the measured value jump up to which a jump event should be detected.	
	In the "No restriction" setting, there is no limitation of the max. jump height. A change from a valid measured value to "No measured value" is evaluated as a negative jump.	
	4294967295 = No limit	
	6 µт300,000 µт	
Jump direction	In teach-in mode, jump detection	Negative
	Positive	
	A jump is detected when the measured value jumps to a higher value, i.e. the contrast value becomes brighter.	
	Negative	
	A jump is detected when the measured value jumps to a lower value, i.e. the contrast value becomes darker.	
	Both	

Function	Possible settings	Default
	A jump is detected for both positive and negative.	
Cycle offset	In teach-in mode, jump detection	50
	The cycle offset indicates which time-shifted reference measured value to use for comparison with the current measured value in order to detect the jump.	
	1256 cycles	
Jump pulse duration	In teach-in mode, jump detection	0
	0 = hold	
	The output remains active until the next jump in the opposite direction has been detected.	
	110,000 ms	
	If a jump is detected, the output is activated with the corresponding pulse length.	
Distance window	In teach-in mode, distance + intensity	1,000 µm
	Distance from set switching point (center of window) to window limits.	
	The distance window is symmetrical around the switching point.	
	4 μm10,000 μm	
Intensity switching	In teach-in mode, distance + intensity	30,000
point	Intensity switching point in digits	
	11,000,000	
Intensity window	In teach-in mode, distance + intensity	4%
	From set intensity switching point (center of window) to window limits.	
	The intensity window is symmetrical around the switching point.	
	150%	

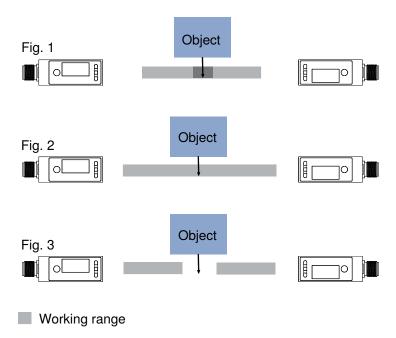

8.7 Differential and Thickness Measurement

In this operating mode, 2 sensors work together to calculate a difference or thickness from the individual measurement results.


This saves time by eliminating the need to program the control unit, and enables the system to immediately calculate and provide a value. This value can then be used for the switching function, or output via analog output. In addition, the calculated difference or thickness output as absolute value via IO-Link.

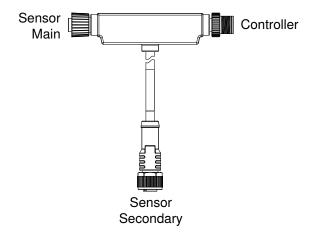
Mechanical Layout

Differential Measurement



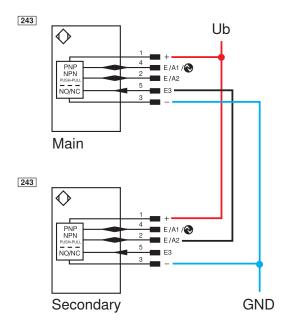
Thickness Measurement

We recommend positioning the sensors in such a way that there is no area between the sensors which is not covered by the sensors' measuring range (Fig. 1 and 2). If this is the case, the object to be measured must be wider than the area not covered (Fig. 3).


The sensors shall be aligned so that the transmitting beams hit the windshield of the opposite sensor. It must be ensured that it does not directly hit the emitter or receiver.

Wiring

With Adapter


The ZC4G004 adapter can be used for simple wiring. Here, only the sensors need to be connected as shown. The sensors are automatically parameterized for the respective operating mode as soon as the sensors are connected. In this case, the main sensor is set to the "Thickness measurement" operating mode. The operating mode must be changed accordingly when performing a differential measurement.

The connections of the adapter can be extended with connection cables. Please note that 5-pin connection cables must be used for the connections of the sensors.

Direct Wiring

As an alternative to using the adapter, the sensors can also be wired directly, via the connection terminals, or to a control unit. To do so, the sensors must be connected according to the following connection diagram. Here, the sensor operating mode must be set manually.

The example shows an application using two digital sensors. In this case, pins 2 and 4 on the main can be used to set the switching points in relation to the calculated difference or thickness. Two analog sensors or a combination of digital and analog sensors can also be used. In this case, the calculated thickness can then be tapped on the main sensor's analog output as an analog signal.

NOTICE

Sensors with different measuring ranges can also be combined with each other. The respective working ranges must be observed during assembly.

A combination of red and blue laser versions is also possible. This combination is recommended if the sensors interfere with each other when there is no object due to the installation situation.

Referencing

To perform the thickness/ differential measurement, the system must be referenced for the mechanical layout and the wiring.

The sensors automatically calibrate the distance to one another so that measurement results can be calculated for the respective setup. Referencing can be performed by Teach-in or Enter key, via OLED menu, Bluetooth or via IO-Link.

The reference object must be placed in the measuring system, depending on the mechanical layout. To reference using the Teach-in key, press and hold this key for 10 seconds until both LEDs begin to flash. Then release the button. The LEDs flash twice briefly as confirmation. The sensors are now referenced.

Outputs

If a sensor is in Main Thickness/Difference mode of operation, the calculated thickness or difference is used for output at the outputs.

SSC1/SSC2

All settings can be carried out identically to stand-alone operation. However, the switching points do not correspond to a distance, but to the thickness/difference. The switching points are set via separate parameters. All other settings are carried out with the general parameters of SSC1/SSC2.

Analog output

In this operating mode, the analog output only works with the tolerance mode. The reference value corresponds to 12 mA or 5 V on the analog output. The tolerance range and characteristics can be set via separate parameters.

Settings

Function	Possible settings	Default
Mode of operation	Stand Alone	Automatic
	The device functions as a stand-alone device.	
	Secondary	
	The sensor provides measurement data for a main device.	
	Main Thickness	
	The sensor performs a thickness measurement using the connected secondary.	
	Main Difference	
	The sensor performs a differential measurement using the connected secondary.	
	Automatic	
	This setting is used to enable automatic detection of the ZC4G004 adapter, when in use, and to preset the operating mode according to the connection. The main sensor is set to Thickness mode.	

Function	Possible settings	Default
Referencing	Start of the referencing process	
	To do so, the reference object must be placed in the measuring system, depending on the mechanical layout, and referencing started.	
	With an analog sensor, 5V / 12mA is applied automatically to the analog output after referencing. Changes, in comparison to the reference thickness, are now output accordingly.	
Sensor alignment off- set (difference)	When referencing, the offset is calculated using the specified reference thickness.	0 μm
Sensor distance (thickness)	When referencing, the sensor distance is calculated using the specified reference thickness.	700,000 μm
Reference thickness	Reference thickness The reference thickness corresponds to the true thickness of the reference object. This thickness is used by the sensor to calculate the absolute value that is output by the main sensor via IO-Link.	
	For analog main sensors, the reference thickness is assigned the analog value 12 mA or 5 V.	
Switching point	Switching point in relation to a thickness or difference used for the function of SSC1 and SSC2.	
Tolerance range	olerance range The tolerance range is arranged symmetrically around the 12 mA/5 V value and defines the range by changing the analog value linearly with the measured value.	
	300,000 μm	
Tolerance character-	Positive slope	Positive slope
istic	The analog value increases as the thickness increases.	
	Negative slope	
	The analog value falls as the distance increases.	

8.8 Condition Monitoring Functions

8.8.1 Status Message Function

The sensor provides various status messages. Due to the process data structure, four status messages can be transmitted as individual process data.

These parameters can be used to set the status messages that are transmitted via the process data.

Function	Possible settings	Default
Message 1	See table "Status Messages" [▶ 38]	Warning signal
Message 2	See table "Status Messages" [▶ 38]	Ambient light
Message 3	See table "Status Messages" [▶ 38]	Temperature too high
Message 4	See table "Status Messages" [▶ 38]	Short circuit

8.8.2 Warning/Error Output Function

The status messages used to trigger the collective message can be defined for the warning output and the error output respectively. The status messages are OR-linked so that the output is activated when one of the defined status messages is activated.

Function	Possible settings	Default
Warning output	See table "Status Messages"	Signal warning, optics dirty, ambient light, temperature too high, temperature too low, undervoltage, interference in the working range
Error output	See table "Status Messages"	Object too close, object too far, no signal, device error, overtemperature, short circuit

Status Messages

Warning	
Undervoltage	The supply voltage is too low.
Warning signal	The object reflects too little light.
Ambient light	Object detection is impeded by ambient light.
Overexposure	The sensor signal is overexposed.
Temperature too high	The sensor's internal temperature is high.
Temperature too low	The sensor's internal temperature is low.
Emitted light off	The sensor's emitted light is switched off.

Error	
Short circuit	A short circuit has occurred on at least one pin.
No signal	The sensor is not receiving a signal.
Object too close	The object is below the setting range or the set measuring range.
Object too far	The object is above the setting range or the set measuring range.
Temperature error	Temperature is outside permissible range. To protect the emitting unit, the laser is switched off.
Device error	A hardware error has occurred. For safety reasons, the laser is switched off.
Laser error	There is an error in the laser module. For safety reasons, the laser is switched off.

8.8.3 Simulation Functions

This function simulates the behavior of the sensor regardless of the current status and measured value. This can be used to check whether a plant in which the sensor is integrated reacts correctly to the data supplied by the sensor and processes them accordingly.

If a measured value is specified, the sensor behaves as if the specified measured value corresponds to the actual measured value. This means that the behavior of the outputs and status messages is simulated according to the specified measured value.

In addition, the individual outputs and status messages can be simulated separately from the measured value.

Function	Possible settings	Default	
Simulation mode	On	Off	
	Off		
Test	Current measured value	Current measured	
measured value	minmax. measuring range	value	
Output O test	According to the measured value	According to the	
	420 mA	measured value	
SSC1 Test	According to the measured value	According to mea-	
	On	sured value	

Function	Possible settings	Default
	Off	
SSC2 Test	According to the measured value	According to mea-
	On	sured value
	Off	
Status messages test	Tests the individual status messages	According to
	according to the measured value	measured value
	On	
	Off	

INFORMATION

Output A1 is used for IO-Link communication in this function and cannot be simulated. Simulation mode ends automatically as soon as the power supply is interrupted.

9 Bluetooth

These sensors have an integrated Bluetooth interface. This interface can be used to configure and parameterize devices using a smartphone and the wenglor "weCon" app. In addition, process data is sent to the app, where it is displayed in a clear, concise manner.

9.1 weCon Installation

The wenglor app can be downloaded free of charge from the Google Play Store and Apple App Store. Download the app and follow the installation instructions.

Scan the code below to access the wenglor app directly.

9.2 Establishing Connection with Sensor

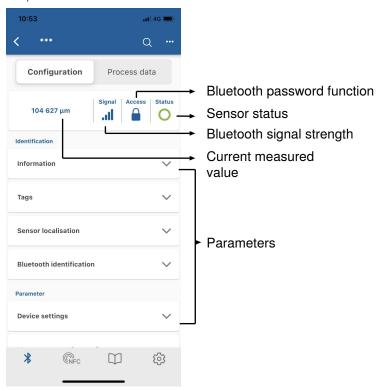
Open the weCon app on your smartphone.

When the app is opened, all wenglor sensors with Bluetooth interface and within range are set to Pairing mode.

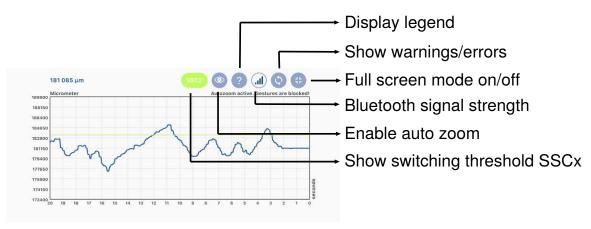
This mode is indicated by the flashing blue LED on the sensors.

Pairing mode is used to pair the app with a corresponding sensor.

Once the app is opened, a list of all sensors within range is shown.


If too many sensors of the same type are fitted within the Bluetooth range, the sensor's supply voltage LEDs can be switched to flashing green by pressing the "Localization" button. This simplifies identification.

Press the "Back" button to open the sensor list again. Pressing the "Connect with sensor" button establishes a connection to the sensor and opens the user interface.


The blue LED will continuously illuminate from now on, indicating that the sensor is paired, and Pairing mode will deactivate.

9.3 Using the weCon App

The sensor parameters are configured using the "Configuration" tab. A detailed description of the individual parameters can be found in section "Function overview".

The "Process Data" tab shows the current measured value, visualizing this value over time in a diagram. The axis scaling can be adjusted in the diagram settings.

NOTICE

The Bluetooth range is approx. 10 m. If the sensor is encapsulated in a system or set up close to obstacles, the range may decrease accordingly.

10 IO-Link

10.1 Parameters

The parameters that can be configured via IO-Link are given in the functional description in the section Function description [> 25].

10.2 Condition Monitoring/Process Data

The data described in the following section can be read or written cyclically via IO-Link/process data.

10.2.1 Process Data In

Data	Meaning
Measured value	Measured distance in micrometers or mil.
	As the sensor cannot determine a measured value in the following error cases, substitute values are read out:
	No signal: 0x7FFFFFC / 2147483644
	Object too close: 0x80000008 / -2147483640
	Object too far: 0x7FFFFFF8 / 2147483640
Scale	Scaling of the measured value to the base length unit; -6 corresponds to μm .
SSC1	Switching point 1
SSC2	Switching point 2
Warning	Collective warning in the event of one of the warning status messages (see table "Status messages") in the error output function)
Error	Collective warning in the event of one of the error status messages (see table "Status messages") in error output function.
Message 1	Status message 1 read out see Status Message Function [▶ 37]
Message 2	Status message 2 read out see Status Message Function [▶ 37]
Message 3	Status message 3 read out see Status Message Function [▶ 37]
Message 4	Status message 4 read out see Status Message Function [▶ 37]

10.2.2 Process Data Out

Data	Meaning
Emitted light	Transmit signal on/off
Localization	Sensor flashes for easy sensor location
Teach-in SSC1	Starts the teach-in process for SSC1
Teach-in SSC2	Starts the teach-in process for SSC2

10.2.3 **Events**

Events are diagnostic information that is standardized by IO-Link and exchanged between the IO-Link master and the device. The following events are supported:

Name	Event code	Туре	Specification
Maintenance necessary: Clean	0x8C40	Notifica- tion	IO-Link
Device error – unknown error	0x1000	Error	IO-Link
Short circuit – check installation	0x7710	Error	IO-Link
Device temperature too high: Remove heat source	0x4210	Warning	IO-Link

Name	Event code	Туре	Specification
Device temperature too low: Isolate device	0x4220	Warning	IO-Link
Temperature error: Overload	0x4000	Error	IO-Link
Supply voltage too low - check tolerances	0x5111	Warning	IO-Link

11 Maintenance Instructions

NOTICE

This wenglor product is maintenance-free.

Cleaning and inspection of the plug connections at regular intervals are advisable.

Do not clean the product with solvents or cleaning agents that could damage the product.

The product must be protected against contamination during initial start-up.

12 Proper Disposal

wenglor sensoric GmbH does not accept the return of unusable or irreparable products. Respectively valid national waste disposal regulations apply to product disposal.

13 Declarations of Conformity

Declarations of conformity can be found on our website at www.automationdirect.com in the product's separate download area.