3	

In This Chapter	page
— Choosing a Programming Device	2
— Using Keypad Devices	3
— "D" Group: Monitoring Functions	6
— "F" Group: Main Profile Parameters	8
— "A" Group: Standard Functions	9
— "B" Group: Fine Tuning Functions	22
— "C" Group: Intelligent Terminal Functions	32

Choosing a Programming Device

Introduction

Hitachi variable frequency drives (inverters) use the latest electronics technology for getting the right AC waveform to the motor at the right time. The benefits are many, including energy savings and higher machine output or productivity. The flexibility required to handle a broad range of applications has required ever more configurable options and parameters—inverters are now a complex industrial automation component. And this can make a product seem difficult to use, but the goal of this chapter is to make this easier for you.

As the powerup test in Chapter 2 demonstrated, you do not have to program very many parameters to run the motor. In fact, most applications would benefit only from programming just a few, specific parameters. This chapter will explain the purpose of each set of parameters, and help you choose the ones that are important to your application.

If you are developing a new application for the inverter and a motor, finding the right parameters to change is mostly an exercise in optimization. Therefore, it is okay to begin running the motor with a loosely tuned system. By making specific, individual changes and observing their effects, you can achieve a finely tuned system.

Introduction to Inverter Programming

The front panel keypad is the first and best way to get to know the inverter's capabilities. Every function or programmable parameter is accessible from the keypad. The other devices simply imitate the keypad's layout and inverter access, while adding another valuable aspect to the system. For example, the Copy Unit can transfer one inverter's parameter settings to another inverter, while still providing standard operator keypad control. In this way, you can use a variety of programming devices with basically the same keypad skills. The following table shows various programming options, the features unique to each device, and the cables required.

Davias	Part	Parameter	Parameter	Cables (choose one)		
Device	Number	Access	storage	Part number	Length	
Inverter keypad		Monitor and program	EEPROM in inverter		_	
DOP Professional Software (for PC)	DOP-PRO	Monitor and program	PC hard drive or diskette	(Included with software)	2 meters	
Digital Operator/	SRW-0EX	Monitor and	EEPROM in	ICS–1	1 meter	
Copy Unit	opy Unit program operator panel		ICS–3	3 meters		
Operator Monitor	erator Monitor OPE–J Monitor only none on		ICJ-1L	1 meter		
operator monitor		ICJ-3L	3 meters			

Using Keypad Devices

Inverter Front Panel Keypad

The L100 Series inverter front keypad contains all the elements for both monitoring and programming parameters. The keypad layout is pictured below. All other programming devices for the inverter have a similar key arrangement and function.

Key and Indicator Legend

- **Run/Stop LED** ON when the inverter output is ON and the motor is developing torque (Run Mode), and OFF when the inverter output is OFF (Stop Mode).
- **Program/Monitor LED** This LED is ON when the inverter is ready for parameter editing (Program Mode). It is OFF when the parameter display is monitoring data (Monitor Mode).
- **Run Key Enable LED** is ON when the inverter is ready to respond to the Run key, OFF when the Run key is disabled.
- **Run Key** Press this key to run the motor (the Run Enable LED must be ON first). Parameter F_04, Keypad Run Key Routing, determines whether the Run key generates a Run FWD or Run REV command.
- **Stop/Reset Key** Press this key to stop the motor when it is running (uses the programmed deceleration rate). This key will also reset an alarm that has tripped.
- **Potentiometer** Allows an operator to directly set the motor speed when the potentiometer is enabled for output frequency control.
- **Potentiometer Enable LED** ON when the potentiometer is enabled for value entry.
- Parameter Display A 4-digit, 7-segment display for parameters and function codes.
- **Display Units, Hertz/Amperes** One of these LEDs will be ON to indicate the units associated with the parameter display.
- Power LED This LED is ON when the power input to the inverter is ON.
- **Function Key** This key is used to navigate through the lists of parameters and functions for setting and monitoring parameter values.
- Up/Down (⚠, ♥) Keys Use these keys alternately to move up or down the lists of parameter and functions shown in the display, and increment/decrement values.
- Store ((STR)) Key When the unit is in Program Mode and you have edited a parameter value, press the Store key to write the new value to the EEPROM.

Keypad Navigational Map

You can use the inverter's front panel keypad to navigate to any parameter or function. The diagram below shows the basic navigational map to access these items.

NOTE: The inverter 7-segment display shows lower case "b" and "d," meaning the same as the upper case letters "B" and "D" used in this manual (for uniformity "A to F").

NOTE: The Store Key saves the edited parameter (shown in the display) to the inverter's EEPROM. Upload or download of parameters to/from external devices is accomplished through a different command—do not confuse *Store* with *Download* or *Upload*.

Operational Modes

The RUN and PGM LEDs tell just part of the story; Run Mode and Program Modes are independent modes, not opposite modes. In the state diagram to the right, Run alternates with Stop, and Program Mode alternates with Monitor Mode. This is a very important ability, for it shows that a technician can approach a running machine and change some parameters without shutting down the machine.

The occurrence of a fault during operation will cause the inverter to enter the Trip Mode as shown. An event such as an output overload will cause the inverter to exit the Run Mode and turn OFF its output to the motor. In the Trip Mode, any request to run the motor is ignored. You must clear the error by pressing the Stop/Reset switch. See page "Monitoring Trip Events, History, & Conditions" on page 6–5.

Run

Mode

Edit

X

1

Run Mode Edits

The inverter can be in Run Mode (inverter output is controlling motor) and still allow you to edit certain parameters. This is useful in applications that must run continuously, yet need some inverter parameter adjustment.

The parameter tables in this chapter have a column titled "Run Mode Edit." An Ex mark \checkmark means the parameter cannot be edited; a Check mark \checkmark means the parameter can be edited. The Software Lock Setting (parameter B_31) determines when the Run Mode access permission is in effect and access permission in other conditions, as well. It is the responsibility of the user to choose a useful and safe software lock setting for the inverter operating conditions and personnel. Please refer to "Software Lock Mode" on page 3–26 for more information.

Control Algorithms

The motor control program in the L100 inverter has two PWM sinusoidal switching algorithms. The intent is that you select the best algorithm for the motor characteristics in your application. Both algorithms generate the frequency output in a unique way. Once configured, the algorithm is the basis for other parameter settings as well (see "Torque Control Algorithms" on page 3–13). Therefore, choose the best algorithm early in your application design process.

"D" Group: Monitoring Functions

Parameter Monitoring Functions

You can access important system parameter values with the "D" Group monitoring functions, whether the inverter is in Run Mode or Stop Mode. After selecting the function code number for the parameter you want to monitor, press the Function key once to show the value on the display. In Functions D_05 and D_06, the intelligent terminals use individual segments of the display to show ON/OFF status.

If the inverter display is set to monitor a parameter and powerdown occurs, the inverter stores the present monitor function setting. For your convenience, the display automatically returns to the previously monitored parameter upon the next powerup.

	"D" Fu	inction	Run	Range
Func. Code	Name / SRW Display	Description	Mode Edit	and Units
D_01	Output frequency monitor FM 0000.00Hz	Real-time display of output frequency to motor, from 0.0 to 360.0 Hz		0.0 to 360.0 Hz
D_02	Output current monitor Im 0.0A 0.0%	Filtered display of output current to motor (100 ms internal filter time constant)		А
D_03	Rotation direction monitor Dir STOP	Three different indications: "F" Forward "I I" Stop "r" Reverse		
D_04	Process variable (PV), PID feedback monitor PID-FB 0000.00%	Displays the scaled PID process variable (feedback) value (A_75 is scale factor)		
D_05	Intelligent input terminal status TERM LLL LLLLL	Displays the state of the intelli- gent input terminals: ON OFF <u>6 5 4 3 2 1</u> Terminal numbers		
D_06	Intelligent output terminal status TERM LLL LLLLL	Displays the state of the intelli- gent output terminals: ON OFF AL 12 11 Terminal numbers		

	"D" Fu	nction	Run	Range
Func. Code	Name / SRW Display	Description	Mode Edit	and Units
D_07	Scaled output frequency monitor	Displays the output frequency scaled by the constant in B_86.		Hz
	/Hz01.0 0.00	XX.XX 0.01 to 99.99 XXX.X 100.0 to 999.9 XXXX. 1000 to 99999 XXXX 10000 to 99990		

Trip Event and History Monitoring

The trip event and history monitoring feature lets you cycle through related information using the keypad. See "Monitoring Trip Events, History, & Conditions" on page 6–5 for more details.

	"D" Fu	nction	Run	Range
Func. Code	Name / SRW Display	Description	Mode Edit	and Units
D_08	Trip event monitorERR1EEPROMERR10.0HzERR10.0AERR1324.3VdcERR1RUN00000H	Displays the current trip event. information.		
D_09	Trip history monitorERR2EEPROMERR20.0HzERR2330.0VdcERR2RUN00000HERR3EEPROMERR30.0HzERR30.0AERR3328.7VdcERR3RUN00000H	Displays the previous two events and their causes.		
	Cumulative operation RUN time monitor RUN 000000H	Displays total time the inverter has been in RUN mode in hours.		hours
	Trip count ERROR COUNT 009	Displays cumulative number of trip events.		trips

"F" Group: Main Profile Parameters

The basic frequency (speed) profile is defined by parameters contained in the "F" Group as shown to the right. The set running frequency is in Hz, but acceleration and deceleration are specified in the time duration of the ramp (from zero to maximum frequency, or from maximum frequency to zero). The motor direction parameter determines whether the keypad

Run key produces a FWD or REV command. This parameter does not affect the intelligent terminal [FWD] and [REV] functions, which you configure separately.

Acceleration 1 and Deceleration 1 are the standard default accel and decel values for the main profile. Accel and decel values for an alternative profile are specified by using parameters A_92 through A_93. The motor direction selection (F_04) determines the direction of rotation as commanded only from the keypad.

"F" Fu		nction	Run		Defaults			
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units	
F_01	Output frequency setting	Standard default target frequency that determines	~	0.0	0.0	0.0	Hz	
	TM 000.0 0.0Hz	range is 0 to 360 Hz						
F_02	Acceleration 1 time setting	Standard default acceleration, range is 0.1 to 3000 sec.	~	10.0	10.0	10.0	sec.	
	ACC 1 0010.0s							
F_03	Deceleration 1 time setting	Standard default deceleration, range is 0.1 to 3000 sec.	~	10.0	10.0	10.0	sec.	
	DEC 1 0010.0s							
F_04	Keypad Run key routing	Two options; select codes: 00Forward	×	00	00	00		
	INIT DOPE FWD	01Reverse						

"A" Group: Standard Functions

Basic Parameter Settings

These settings affect the most fundamental behavior of the inverter—the outputs to the motor. The frequency of the inverter's AC output determines the motor speed. You may select from three different sources for the reference speed. During application development you may prefer using the potentiometer, but you may switch to an external source (control terminal setting) in the finished application, for example.

The base frequency and maximum frequency settings interact according to the graph below (left). The inverter output operation follows the constant V/f curve until it reaches the full-scale output voltage. This initial straight line is the constant-torque part of the operating characteristic. The horizontal line over to the maximum frequency serves to let the motor run faster, but at a reduced torque. If you want the motor to output constant torque over its entire operating range (limited to the motor nameplate voltage and frequency rating), then set the base frequency and maximum frequency equal as shown (below right).

	"A" Function			Run		Defa	ults	
Func. Code	Nan SRW D	ne /)isplay	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
A_01	Frequency setting		Three options; select codes: 00Keypad potentiometer 01Control terminal	×	01	01	00	
	F-OCI-OCL	ECT IRN	02Function F01 setting					
A_02	Run comman setting	nd source	Two options; select codes: 01Control terminal	×	01	01	02	—
	F/R SELEC	T TRM	02Run key on keypad, or digital operator					
A_03	Base frequer	ncy setting	Settable from 50 Hz to the	×	50.0	60.0	60.0	Hz
	F-BASE	060Hz	maximum frequency					
A_04	Maximum fr setting	requency	Settable from the base frequency up to 360 Hz	×	50.0	60.0	60.0	Hz
	F-MAX	060Hz						

Analog Input Settings

The inverter has the capability to accept an external analog input that can command the output frequency to the motor. Voltage input (0-10V) and current input (4-20mA) are available on separate terminals ([O] and [OI], respectively). Terminal [L] serves as signal ground for the two analog inputs. The analog input settings adjust the curve characteristics between the analog input and the frequency output.

In the graph below (left), A_13 and A_14 select the active portion of the input voltage or current range. The parameters A_11 and A_12 select the start and end frequency of the converted output frequency range, respectively. Together, these four parameters define a line segment as shown (below, right). When the line does not begin at the origin, A_15 defines whether the inverter outputs 0Hz or the A_11 frequency when the analog input value is less than the A_13 setting (determines the non-linear part of the translation).

"A" Fu		nction	Run		Defa	ults	
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
A_11	O–L input active range start frequency	The output frequency corre- sponding to the analog input	×	0.0	0.0	0.0	Hz
	IN EXS 000.0Hz	The output frequency corre-					
A_12	O–L input active range end frequency	The output frequency corre- sponding to the analog input	×	0.0	0.0	0.0	Hz
	IN EXE 000.0Hz	range ending point					
A_13	O–L input active range start voltage	The starting point (offset) for the active analog input range	×	0	0	0	%
	IN EX%S 000%						
A_14	O–L input active range end voltage	The ending point (offset) for the active analog input range	×	100	100	100	%
	IN EX%E 100%						
A_15	O–L input start frequency enable	Two options; select codes: 00Use offset (A_11 value)	×	01	01	01	—
	IN LEVEL 0Hz	01 Use 0 Hz					

3–11

	"A" Function				Defa	nults	
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
A_16	External frequency filter time constant	Range $n = 1$ to 8, where $n =$ number of samples for avg.	×	8	8	8	Sam- ples
	IN F-SAMP 8						

Multi-speed and Jog Frequency Setting

The L100 inverter has the capability to store and output up to 16 preset frequencies to the motor (A_20 to A_35). As in traditional motion terminology, we call this *multispeed profile* capability. These preset frequencies are selected by means of digital inputs to the inverter. The inverter applies the current acceleration or deceleration setting to change from the current output frequency to the new one.

The jog speed setting is used whenever the Jog command is active. The jog speed setting range is arbitrarily limited to 10 Hz, to provide safety during manual operation. The acceleration to the jog frequency is instantaneous, but you can choose from three modes for the best method for stopping the jog operation.

	"A" F	unction	Run		Defa	nults	
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
A_20	Multi-speed frequency setting	Defines the first speed of a multi-speed profile, range is	~	0	0	0	Hz
	SPD FS 000.0Hz	-0 to 360 Hz					
A_21 to A_35	Multi-speed frequency settings	Defines 15 more speeds, range is 0 to 360 Hz. A_21= Speed 2 A_35 = Speed 16	~	see next row	see next row	see next row	Hz
	SPD 1 000.0Hz SPD 2 000.0Hz SPD 3 000.0Hz SPD 4 000.0Hz SPD 5 000.0Hz SPD 6 000.0Hz SPD 7 000.0Hz SPD 8 000.0Hz SPD 9 000.0Hz SPD 10 000.0Hz SPD 11 000.0Hz SPD 12 000.0Hz SPD 13 000.0Hz SPD 14 000.0Hz SPD 15 000.0Hz	A_21 A_22 A_23 A_24 A_25 A_26 A_27 A_28 A_29 A_30 A_31 A_32 A_33 A_34 A_35		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 5\\ 10\\ 15\\ 20\\ 30\\ 40\\ 50\\ 60\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	
A_38	Jog frequency setting	Defines limited speed for jog,	~	1.0	1.0	1.0	Hz
	Jossins 01.00Hz	range is 0.5 to 9.99 Hz					
A_39	Jog stop mode Jog Mode Ø	Define how end of jog stops the motor; three options: 00Free-run stop 01Controlled deceleration 02DC braking to stop	×	00	00	00	

Torque Control Algorithms

The inverter generates the motor output according to the V/f algorithm selected. Parameter A_44 selects the inverter algorithm for generating the frequency output, as shown in the diagram to the right. The factory default is 00 (constant torque).

Review the following description to help you choose the best torque control algorithm for your application.

• The built-in V/f curves are oriented toward developing constant torque or variable torque characteristics (see graphs below). You can select either constant torque or reduced torque V/f control.

Constant and Variable (Reduced) Torque – The graph below (left) shows the constant torque characteristic from 0Hz to the base frequency A_03. The voltage remains constant for output frequencies higher than the base frequency. The graph below (right) shows the general variable (reduced) torque curve. The range from 0Hz to the base frequency is the variable characteristic.

Torque Boost – The Constant and Variable Torque algorithms feature an adjustable *torque boost* curve. When the motor load has a lot of inertia or starting friction, you may need to increase the low frequency starting torque characteristics by boosting the voltage above the normal V/f ratio (shown at right). The boost is applied from zero to 1/2 the base frequency. You set the breakpoint of the boost (point A on the graph) by using

parameters A_42 and A_43. The manual boost is calculated as an addition to the standard straight V/f line (constant torque curve).

Be aware that running the motor at a low speed for a long time can cause motor overheating. This is particularly true when manual torque boost is ON, or if the motor relies on a built-in fan for cooling.

Voltage Gain – Using parameter A_45 you can
modify the voltage gain of the inverter (see
graph at right). This is specified as a percent-
age of the full scale setting (Automatic Voltage
Regulation) AVR level in parameter F_03. The
gain can be set from 50% to 100%. It should be
adjusted in accordance with the motor specifications.V0

The following table shows the methods of torque control selection.

	"A" Fu	nction	Run		Defaults			
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units	
A_41	Torque boost method selection	Two options: 00 Manual torque boost	×	00	00	00	_	
	V-Boost Mode Ø	Can boost starting torque						
A_42	Manual torque boost value	Can boost starting torque between 0 and 99% above	~	11	11	11		
	V-Boost code 11	normal V/f curve, from 0 to 1/2 base frequency						
A_43	Manual torque boost frequency adjustment	Sets the frequency of the V/f breakpoint A in graph (top of	1	10.0	10.0	10.0	%	
	V-Boost F 10.0%	previous page) for torque boost						
A_44	V/f characteristic curve selection	Two available V/f curves; three select codes:	×	00	00	00	_	
	CONTROL SLV	00 Constant torque 01 Reduced torque						
A_45	V/f gain setting	Sets voltage gain of the	~	100	100	100	%	
	V-Gain 100%	inverter from 50 to 100%						

Configuring Drive Parameters

3

DC Braking Settings

The DC braking feature can provide additional stopping torque when compared to a normal deceleration to a stop. DC braking is particularly useful at low speeds when normal deceleration torque is minimal. When you enable DC braking, the inverter injects a DC voltage into the motor windings

during deceleration below a frequency you can specify (A_52). The braking power (A_54) and duration (A_55) can both be set. You can optionally specify a wait time before DC braking (A_53), during which the motor will free run (coast).

CAUTION: Be careful to avoid specifying a braking time that is long enough to cause motor overheating. If you use DC braking, we recommend using a motor with a built-in thermistor, and wiring it to the inverter's thermistor input (see "Thermistor Thermal Protection" on page 4–20). Also refer to the motor manufacturer's specifications for duty-cycle recommendations during DC braking.

	"A" Function Run		Run Defaults				
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
A_51	DC braking enable	Two options; select codes:	×	00	00	00	—
	DCB SW OFF	00Disable 01Enable					
A_52	DC braking frequency setting	The frequency at which DC braking occurs,	×	0.5	0.5	0.5	Hz
	DCB F 00.5Hz	range is 0.5 to 10 Hz					
A_53	DC braking wait time	The delay from the end of Run	×	0.0	0.0	0.0	sec.
	DCB WAIT 0.0s	command to start of DC braking (motor free runs until DC braking begins)					
A_54	DC braking during deceleration	Applied level of DC braking force, settable from 0 to 100%	×	0	0	0	%
	DCB V 000						
A_55	DC braking time for deceleration	Sets the duration for DC braking, range is 0.1 to 60.0	×	0.0	0.0	0.0	sec.
	DCB T 00.0s	seconds					

Frequency-related Functions

Frequency Limits – Upper and lower limits can be imposed on the inverter output frequency. These limits will apply regardless of the source of the speed reference. You can configure the lower frequency limit to be greater than zero as shown in the graph to the right. The upper limit must not exceed the rating of the motor or capability of the machinery.

"A" Function			Run	Defaults			
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
A_61	Frequency upper limit setting	Sets a limit on output frequency less than the	×	0.0	0.0	0.0	Hz
	LIMIT H 000.0Hz	maximum frequency (A_04) Range is 0.5 to 360.0 Hz 0.0setting is disabled >0.1 setting is enabled					
A_62	Frequency lower limit setting	Sets a limit on output frequency greater than zero	×	0.0	0.0	0.0	Hz
	LIMIT L 000.0Hz	Range is 0.5 to 360.0 Hz 0.0setting is disabled >0.1 setting is enabled					

Configuring Drive Parameters

3

Jump Frequencies – Some motors or machines exhibit resonances at particular speed(s), which can be destructive for prolonged running at those speeds. The inverter has up to three *jump frequencies* as shown in the graph. The hysteresis around the jump frequencies causes the inverter output to skip around the sensitive frequency values

Frequency of	command
--------------	---------

"A" Function			Run	Defaults			
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
A_63, Jump (center) A_65, frequency setting JUMP F1 000.0Hz JUMP F2 000.0Hz JUMP F3 000.0Hz	Up to 3 output frequencies can be defined for the output to	×	0.0 0.0	0.0 0.0	0.0 0.0	Hz	
	JUMP F1 000.0Hz JUMP F2 000.0Hz JUMP F3 000.0Hz	jump past to avoid motor resonances (center frequency) Range is 0.0 to 360.0 Hz		0.0	0.0	0.0	
A_64, A_66, A_68	Jump (hysteresis) frequency width setting	Defines the distance from the center frequency at which the	×	0.5 0.5	0.5 0.5	0.5 0.5	Hz
	JUMP W1 00.50Hz JUMP W2 00.50Hz JUMP W3 00.50Hz	jump around occurs Range is 0.0 to 10.0 Hz		0.5	0.5	0.5	

PID Control

When enabled, the built-in PID loop calculates an ideal inverter output value to cause a loop feedback process variable (PV) to move closer in value to the setpoint (SP). The current frequency command serves as the SP. The PID loop algorithm will read the analog input for the process variable (you specify the current or voltage input) and calculate the output.

- A scale factor in A_75 lets you multiply the PV by a factor, converting it into engineering units for the process.
- Proportional, integral, and derivative gains are all adjustable.
- See "PID Loop Operation" on page 4–32 for more information.

"A" Function		Run	Defaults				
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
A_71	PID Enable	Enables PID function,	×	00	00	00	
	PID SW OFF	two option codes: 00PID Disable 01PID Enable					
A_72	PID proportional gain	Proportional gain has a range of 0.2 to 5.0	×	1.0	1.0	1.0	
	PID P 1.0	of 0.2 to 5.0					
A_73	PID integral time constant	Integral time constant has a range of 0.0 to 150 seconds	×	1.0	1.0	1.0	sec.
	PID I 001.0s						
A_74	PID derivative time constant	Derivative time constant has a range of 0.0 to 100 seconds	×	0.0	0.0	0.0	sec.
	PID D 00.0						
A_75	PV scale conversion	Process Variable (PV) scale	×	1.00	1.00	1.00	
	PID CONV 01.00	factor (multiplier), range of 0.01 to 99.99					
A_76	PV source setting	Selects source of Process Variable (PV), option codes: 00[OI] terminal (current in) 01[O] terminal (voltage in)	×	00	00	00	
	PID INPT CUR						

NOTE: The setting A_73 for the integrator is the integrator's time constant Ti, not the gain. The integrator gain Ki = 1/Ti. When you set A_73 = 0, the integrator is disabled.

Automatic Voltage Regulation (AVR) Function

The automatic voltage regulation (AVR) feature keeps the inverter output waveform at a relatively constant amplitude during power input fluctuations. This can be useful if the installation is subject to input voltage fluctuations. However, the inverter cannot boost its motor output to a voltage higher than the power input voltage. If you enable this feature, be sure to select the proper voltage class setting for your motor.

"A" Function		Run	Defaults				
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
A_81	AVR function select	Automatic (output) voltage	×	02	00	02	—
	AVR MODE DOFF	regulation, selects from three type of AVR functions, three option codes: 00AVR enabled 01AVR disabled 02AVR enabled except during deceleration					
A_82	AVR voltage select	200V class inverter settings: 200/220/230/240 400V class inverter settings: 380/400/415/440/460	×	230/	230/	200/	V
	AVR AC 230V			400	460	400	

Second Acceleration and Deceleration Functions

The L100 inverter features two-stage acceleration and deceleration ramps. This gives flexibility in the profile shape. You can specify the frequency transition point, the point at which the standard acceleration (F_02) or deceleration (F_03) changes to the second acceleration (A_92) or deceleration (A_93). Select a transition frequency method via A_94 as depicted below.

"A" Function		Run	Defaults				
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
A_92	Acceleration (2) time setting	Duration of 2nd segment of acceleration, range is: 0.1 to 3000 sec.	~	15.0	15.0	15.0	sec.
A_93	Deceleration (2) time setting	Duration of 2nd segment of deceleration, range is:	~	15.0	15.0	15.0	sec.
	DEC 2 0015.0s	0.1 to 3000 sec.					
A_94	Select method to switch to Acc2/Dec2 profile	Two options for switching from 1st to 2nd accel/decel:	×	00	00	00	
	ACC CHG TM	002CH input from terminal 01transition frequency					
A_95	Acc1 to Acc2 frequency transition point	Output frequency at which Accel1 switches to Accel2,	×	0.0	0.0	0.0	Hz
	ACC CHFr 000.0Hz	range 1s 0.0 to 360.0 Hz					
A_96	Dec1 to Dec2 frequency transition point	Output frequency at which Decel1 switches to Decel2,	×	0.0	0.0	0.0	Hz
	DEC CHFr 000.0Hz	range 1s 0.0 to 360.0 Hz					

NOTE: For A_95 and A_96, if you set a very rapid Acc1 or Dec1 time (less than 1.0 second), the inverter may not be able to change rates to Acc2 or Dec2 before reaching the target frequency. In that case, the inverter decreases the rate of Acc1 or Dec1 in order to achieve the second ramp to the target frequency.

Accel/Decel

Standard acceleration and deceleration is linear. The inverter CPU can also calculate an S-curve acceleration or deceleration curve as shown. This profile is useful for favoring the load characteristics in particular applications.

Curve settings for acceleration and deceleration are independently selected. To enable the S-curve, use function A_97 (acceleration) and A_98 (deceleration).

	"A" Function				Defa	efaults		
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units	
A_97	Acceleration curve selection	Set the characteristic curve of Acc1 and Acc2, two options:	×	00	00	00		
	ACCEL LINE L	00linear 01S-curve						
A_98	Deceleration curve selection	Set the characteristic curve of Acc1 and Acc2, two options:	×	00	00	00	—	
	DEC LINE L	L 00linear 01S-curve						

"B" Group: Fine Tuning Functions

The "B" Group of functions and parameters adjust some of the more subtle but useful aspects of motor control and system configuration.

Automatic Restart Mode

The restart mode determines how the inverter will resume operation after a fault causes a trip event. The four options provide advantages for various situations. Frequency matching allows the inverter to read the motor speed by virtue of its residual magnetic flux and restart the output at the corresponding frequency. The inverter can attempt a restart a certain number of times depending on the particular trip event:

- Over-current trip, restart up to 3 times
- Over-voltage trip, restart up to 3 times
- Under-voltage trip, restart up to 16 times

When the inverter reaches the maximum number of restarts (3 or 16), you must powercycle the inverter to reset its operation.

Other parameters specify the allowable under-voltage level and the delay time before restarting. The proper settings depend on the typical fault conditions for your application, the necessity of restarting the process in unattended situations, and whether restarting is always safe.

"B" Function			Run	Defaults			
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
B_01	Selection of restart mode IPS POWR ALM	Select inverter restart method, four option codes: 00Alarm output after trip, no automatic restart 01Restart at 0Hz 02Resume operation after frequency matching 03Resume previous freq. after freq. matching, then decelerate to stop and display trip info.	×	00	00	00	
B_02	Allowable under- voltage power failure time IPS UVTIME Ø1.Øs	The amount of time a power input under-voltage can occur without tripping the power failure alarm. Range is 0.3 to 25 sec. If under-voltage exists longer than this time, the inverter trips, even if the restart mode is selected.	×	1.0	1.0	1.0	sec.
B_03	Retry wait time before motor restart IPS WAIT 001.05	Time delay after under-voltage condition goes away, before the inverter runs motor again. Range is 0.3 to 100 seconds.	×	1.0	1.0	1.0	sec.

Electronic Thermal Overload Alarm Setting

The thermal overload detection protects the inverter and motor from overheating due to an excessive load. It uses a current/inverse time curve to determine the trip point.

First, use B_13 to select the torque characteristic that matches your load. This allows the inverter to utilize the best thermal overload characteristic for your application. Torque Constant torque |B_13 = 01 100% 80% Reduced torque 60% В 13 = 00 0 Ηz 20 60 120 5 Output frequency

The torque developed in a motor is directly proportional to the current in the windings,

which is also proportional to the heat generated (and temperature, over time). Therefore, you must set the thermal overload threshold in terms of current (amperes) for parameter B_12. The range is 50% to 120% of the rated current for each inverter model. If the current exceeds the level you specify, the inverter will trip and log an event (error E05) in the history table. The inverter turns the motor output OFF when tripped.

"B" Function			Run	Defaults			
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
B_12	Level of electronic thermal setting	Set a level between 50% and 120% for the rated inverter	×	Rated current for each inverter model			%
	E-THM LVL 03.00A	current.		*See note			
B_13	Electronic thermal characteristic	Select from two curves, option codes:	×	01	01	00	
	E-THM CHAR CRT	CHAR CRT 00Reduced torque 01Constant torque					

WARNING: When parameter B_12, level of electronic thermal setting, is set to device FLA rating (Full Load Ampere nameplate rating), the device provides solid state motor overload protection at 115% of device FLA or equivalent. Parameter B_12, level of electronic thermal setting, is a variable parameter.

NOTE: For inverter models 005NFE, 011NFE, and 030HFE, the thermal value is less than the rated amperes (is the same as models 004NFE, 007NFE, and 040HFE respectively). Therefore, be sure to set the electronic thermal overload according to the actual motor driven by the particular inverter.

Overload Restriction

If the inverter's output current exceeds a preset current level you specify during acceleration or constant speed, the overload restriction feature automatically reduces the output frequency to restrict the overload. This feature does not generate an alarm or trip event. You can instruct the inverter to apply overload restriction only during constant speed, thus allowing higher currents for acceleration. Or, you may use the same threshold for both acceleration and constant speed. In the case of controlled deceleration, the inverter monitors both output current and DC bus voltage. The inverter will increase output frequency to try to avoid a trip due to over-current or over-voltage (due to regeneration).

When the inverter detects an overload, it must decelerate the motor to reduce the current until it is less than the threshold. You can choose the rate of deceleration that the inverter uses to lower the output current.

"B" Function		Run	Defaults				
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
B_21	Overload restriction operation mode	Select the operating mode during overload conditions, three options, option codes: 00Disabled 01Enabled for acceleration and constant speed 02Enabled for constant speed only	×	01	01	01	—
	OLOAD MODE ON						
B_22	Overload restriction setting	Sets the level for overload restriction, between 50% and	×	Rated	current	x 1.25	А
	OLOAD LVL 03.75A	150% of the rated current of the inverter, setting resolution is 1% of rated current					
B_23	Deceleration rate at overload restriction	Sets the deceleration rate when inverter detects overload, range	×	1.0	1.0	1.0	_
	OLOAD CONST 01.0	is 0.1 to 30.0, resolution is 0.1.					

Software Lock Mode

The software lock function keeps personnel from accidentally changing parameters in the inverter memory. Use B_31 to select from various protection levels.

The table below lists all combinations of B_31 option codes and the ON/OFF state of the [SFT] input. Each Check \checkmark or Ex \times indicates whether the corresponding parameter(s) can be edited. The Standard Parameters column below shows access is permitted for some lock modes. These refer to the parameter tables throughout this chapter, each of which includes a column titled *Run Mode Edit* as shown to the right. The marks (Check \checkmark or

Run Mode Edit	
×	
~	

Ex \checkmark) under the "Run Mode Edit" column title indicate whether access applies to each parameter as defined in the table below. In some lock modes, you can edit only F_01 and the Multi-speed parameter group that includes A_20, A220, A_21-A_35, and A_38 (Jog). However, it does not include A_19, Multi-speed operation selection. The editing access to B_31 itself is unique, and is specified in the right-most two columns below.

B_31 Lock	[SFT] Intelligent	Standard 1	Parameters	F_01 and Multi-Speed	В_	_31
Mode	Input	Stop	Run	Stop & Run	Stop	Run
00	OFF	~	Run mode edit access	~	~	×
	ON	×	×	×	~	×
01	OFF	~	Run mode edit access	~	~	×
	ON	×	×	~	~	×
02	(ignored)	×	×	×	~	×
03	(ignored)	×	×	~	~	×

NOTE: Since the software lock function B_31 is always accessible, this feature is not the same as password protection used in other industrial control devices.

3-

	"B" Function			Defaults			
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
B_31	Software lock mode selection	Prevents parameter changes, in four options, option codes:	×	01	01	01	—
	S-LOCK MD1	00all parameters exceptB_31 are locked when [SFT]terminal is ON01all parameters exceptB_31 and output frequencyF01 when SFT from terminal isON02all parameters exceptB_31 are locked03all parameters exceptB_31 and output frequencyF_01 setting are locked					

_/	ລລລລລວ	
L		

NOTE: To disable parameter editing when using B_31 lock modes 00 and 01, assign the [SFT] function to one of the intelligent input terminals. See "Software Lock" on page 4–17.

Miscellaneous Settings

The miscellaneous settings include scaling factors, initialization modes, and others. This section covers some of the most important settings you may need to configure.

B_32: Reactive current setting – The inverter's D_02 monitor function displays the motor current. The display accuracy is normally $\pm 20\%$, provided that the following conditions exist:

- A single motor with standard frame size and characteristics is connected
- The inverter's output frequency is at 50% or higher of the maximum output frequency
- The inverter's output current is within the rated current

However, it will be necessary to calibrate the display accuracy via B_32 adjustment of the internal no-load reactive motor current if any of these conditions exist:

- The motor is smaller than the standard maximum recommended for the inverter
- The motor is a two-pole motor type
- Two or more motors are connected in parallel to the inverter (be sure to multiply the current by the number of motors when setting B_32)

If you do not know the reactive or no-load current for your particular motor, you can calibrate the L100 as follows:

1. Connect the motor directly across the AC line with no load attached to the shaft.

WARNING: Use a disconnect switch or breaker to ensure that you do not connect the motor or inverter to live wiring. Otherwise, there is the danger of electric shock.

- **2.** Run the motor, and measure the no-load current with an AC current clamp, recording the value.
- **3.** Disconnect the motor from the AC line connection, and connect the motor to the L100 inverter output (still with no load attached).
- **4.** Run the motor at the base frequency (value of parameter A_03), and monitor the motor current with function D_02.
- **5.** If the D_02 display value does not match the current clamp value recorded in Step 2, adjust parameter B_32 up or down until the best match is achieved.

Г	ວວວວວວ	
Λ		
1		
<u> </u>		L

NOTE: Parameter setting B_32 affects the inverter's electronic thermal protection (B_12 setting) and its overload restriction function (B_22 setting).

B_83: Carrier frequency adjustment – The internal *switching frequency* of the inverter circuitry (also called the *chopper frequency*). It is called the carrier frequency because the lower AC output frequency of the inverter "rides" the carrier. The faint, high-pitched sound you hear when the inverter is in Run Mode is characteristic of switching power supplies in general. The carrier frequency is adjustable from 500 Hz to 16 kHz. The audible sound decreases at the higher frequencies, but RFI noise and leakage current may be increased. Refer to the specification derating curves in Chapter 1 to determine the maximum allowable carrier frequency setting for your particular inverter and environmental conditions.

NOTE: When DC braking is performed, the inverter automatically holds the carrier frequency at 1 kHz.

NOTE: The carrier frequency setting must stay within specified limits for invertermotor applications that must comply with particular regulatory agencies. For example, a European CE-approved application requires the inverter carrier to be less than 5 kHz.

B_84, B_85: Initialization codes – These functions allow you to restore the factory default settings. Please refer to "Restoring Factory Default Settings" on page 6–8.

B_86: Frequency display scaling – You can convert the output frequency monitor on D_01 to a scaled number (engineering units) monitored at function D_07. For example, the motor may run a conveyor that is monitored in feet per minute. Use this formula:

Scaled output frequency $(D_07) =$ Output frequency $(D_01) \times$ Factor (B_86)

	"B" Fu	inction	Run		Defa	nults	
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
B_32	Reactive current setting	Calibrate detection of motor's	~	58%	rated cu	rrent	А
	IO 0.00A	no load (reactive) current to improve D_02 display accuracy, range is 0 to 32 Amperes					
B_81	[FM] terminal analog meter adjustment	Adjust 8-bit gain to analog meter connected to terminal	~	80	80	80	—
	ADJ 080	[FM], range is 0 to 255					
B_82	Start frequency adjust- ment	Sets the starting frequency for the inverter output, range is 0.5	×	0.5	0.5	0.5	Hz
	Fmin 0.5Hz	to 9.9 Hz					
B_83	Carrier frequency setting	Sets the PWM carrier (internal switching frequency), range is	×	5.0	5.0	12.0	kHz
	CARRIER 05.0kHz	0.5 to 16.0 kHz					
B_84	Initialization mode (parameters or trip history)	Select the type of initialization to occur, two option codes: 00Trip history clear	×	00	00	00	—
	INIT MODE TRP	01Parameter initialization					
B_85	Country code for initial- ization	tial- Select default parameter values for country on initialization,		01	02	00	—
	INIT SEL USA	00Japan version 01Europe version 02US version 03reserved (do not set)					

	"B" Fu	Run	Defaults				
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
B_86	Frequency scaling conversion factor	Specify a constant to scale the displayed frequency for D_07	×	1.0	1.0	1.0	
	/Hz01.0 0.00	monitor, range is 0.1 to 99.9					
B_87	STOP key enable	Select whether the STOP key	×	00	00	00	
	STOP-SW ON	on the keypad is enabled, two option codes: 00enabled 01disabled					

B_88: Restart Mode Configuration – You can configure how the inverter resumes motor output control after a free-run stop. Setting B_88 determines whether the inverter will ensure the motor always resumes at 0 Hz, or whether the motor resumes from its current coasting speed (also called *frequency matching*). The Run command may turn OFF briefly, allowing the motor to coast to a slower speed from which normal operation can resume.

In most applications a controlled deceleration is desirable. However, applications such as HVAC fan control will often use a free-run stop. This practice decreases dynamic stress on system components, prolonging system life. In this case, you will typically set B_88=01 in order to resume from the current speed after a free-run stop (see diagram below, right). Note that using the default setting, B_88=00, can cause trip events when the inverter attempts to force the load quickly to zero speed.

NOTE: Other events can cause (or be configured to cause) a free-run stop, such as power loss (see "Automatic Restart Mode" on page 3–22), or an intelligent input terminal [FRS] signal. If all free-run stop behavior is important to your application (such as HVAC), be sure to configure each event accordingly.

An additional parameter further configures all instances of a free-run stop. Parameter B_03, Retry Wait Time Before Motor Restart, sets the minimum time the inverter will free-run. For example, if $B_03 = 4$ seconds and the cause of the free-run-stop lasts 10 seconds, the inverter will free-run (coast) for a total of 14 seconds before driving the motor again.

	"B" Fu	inction	Run		Defa	aults	
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
B_88	Restart mode after FRS RUN FRS ZST	Selects how the inverter resumes operation when the free-run stop (FRS) is cancelled, two options:	×	00	00	00	
		00 Restart from 0Hz 01 Restart from frequency detected from real speed of motor (frequency matching)					
B_89	Data select for digital operator OPE-J PANEL dØ1	Select the monitoring data to send to the optional remote hand-held digital operator, seven option codes: 01 Output frequency (D_01) 02 Output current (D_02) 03 Motor direction (D_03) 04 PID PV feedback (D_04) 05 Input states for input terminals (D_05) 06 Output states for output terminals (D_06) 07 Scaled output frequency (D_07)	~	01	01	01	

"C" Group: Intelligent Terminal Functions

The five input terminals [1], [2], [3], [4], and [5] can be configured for any of fifteen different functions. The next two tables show how to configure the five terminals. The inputs are logical, in that they are either OFF or ON. We define these states as OFF=0, and ON=1.

The inverter comes with default options for the five terminals. These default settings are initially unique, each one having its own setting. Note that European and US versions have different default settings. You can use any option on any terminal, and even use the same option twice to create a logical OR (though usually not required).

NOTE: Terminal **[5]** has the ability to be a logical input, and to be an analog input for a thermistor device when the PTC function (option code 19) is assigned to that terminal.

Input Terminal Configuration

Functions and Options – The *function codes* in the following table let you assign one of fifteen options to any of the five logic inputs for the L100 inverters. The functions C_01through C_05 configure the terminals [1] through [5] respectively. The "value" of these particular parameters is not a scalar value, but it is a discrete number that selects one option from many available *options*.

For example, if you set function $C_01=00$, you have assigned option 00 (Forward Run) to terminal [1]. The option codes and the specifics of how each one works are in Chapter 4.

"C" Function				Run	Defaults			
Func. Code	Name SRW Dis	/ play	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
C_01	Terminal [1] fu	unction	Select function for terminal [1]	×	00	00	00	_
	IN-TM 1	F₩	15 options (see next section)		[FW]	[FW]	[FW]	
C_02	Terminal [2] fu	unction	Select function for terminal [2]	×	01	01	01	
	IN-TM 2	RV	15 options (see next section)		[KV]		[KV]	
C_03	Terminal [3] fu	unction	Select function for terminal [3]	×	02	16	02	
	IN-TM 3	ΑT	15 options (see next section)		[CF1]	[AI]	[CF1]	
C_04	Terminal [4] fu	unction	Select function for terminal [4]	×	03	13	03	
	IN-TM 4	USP	15 options (see next section)		[CF2]	[USP]	[CF2]	
C_05	Terminal [5] fu	unction	Select function for terminal [5]	×	18	18	18	—
	IN-TM 5	2CH	16 options (see next section)		[KS]	[KS]	[KS]	

The input logic convention is programmable for each of the five inputs. Most inputs default to normally open (active high), but you can select normally closed (active low) in order to invert the sense of the logic.

	"C" Fu	inction	Run	Defaults			
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
C_11	Terminal [1] active state	Select logic convention, two	×	00	00	00	_
	IN-TM O/C-1 NO	TM 0/C-1 N0 option codes: 00normally open [NO] 01normally closed [NC]					
C_12	Terminal [2] active state	Select logic convention, two	×	00	00	00	—
	IN-TM O/C-2 NO	00normally open [NO] 01normally closed [NC]					
C_13	Terminal [3] active state	Select logic convention, two	×	00	00	00	_
	IN-TM O/C-3 NO	00normally open [NO] 01normally closed [NC]					
C_14	Terminal [4] active state	Select logic convention, two	×	00	01	00	
	IN-TM O/C-4 NC	option codes: 00normally open [NO] 01normally closed [NC]					
C_15	Terminal [5] active state	Select logic convention, two	×	00	00	00	
	IN-TM O/C-5 NO	option codes: 00normally open [NO] 01normally closed [NC]					

Configuring Prive Parameters

NOTE: An input terminal configured for option code 18 ([RS] Reset command) cannot be configured for normally closed operation.

Intelligent Input Terminal Overview

Each of the five intelligent terminals may be assigned any of the options in the following table. When you program one of the option codes for terminal assignments C_01 to C_05, the respective terminal assumes the function role of that option code. The terminal functions have a symbol or abbreviation that we use to label a terminal using that function. For example the "Forward Run" command is [FW]. The physical label on the terminal block connector is simply 1, 2, 3, 4, or 5. However, schematic examples in this manual also use the terminal symbol (such as [FW]) to show the assigned option. The option codes for C_11 to C_15 determines the active state of the logical input (active high or active low).

Input Function Summary Table – This table shows all fifteen intelligent input functions at a glance. Detailed descriptions of these functions, related parameters and settings, and example wiring diagrams are in "Using Intelligent Input Terminals" on page 4–8.

	Input Function Summary Table								
Option Code	Terminal Symbol	Function Name		Description					
00	FW	Forward Run/Stop	ON	Inverter is in Run Mode, motor runs forward					
			OFF	Inverter is in Stop Mode, motor stops					
01	RV	Reverse Run/Stop	ON	Inverter is in Run Mode, motor runs reverse					
			OFF	Inverter is in Stop Mode, motor stops					
02	CF1	Multi-speed Select,	ON	Binary encoded speed select, Bit 0, logical 1					
		Bit 0 (LSB)	OFF	Binary encoded speed select, Bit 0, logical 0					
03	CF2	Multi-speed Select,	ON	Binary encoded speed select, Bit 1, logical 1					
		Bit 1	OFF	Binary encoded speed select, Bit 1, logical 0					
04	CF3	Multi-speed Select,	ON	Binary encoded speed select, Bit 2, logical 1					
		Bit 2	OFF	Binary encoded speed select, Bit 2, logical 0					
05	CF4	Multi-speed Select,	ON	Binary encoded speed select, Bit 3, logical 1					
		Bit 3 (MSB)	OFF	Binary encoded speed select, Bit 3, logical 0					
06	JG	Jogging	ON	Inverter is in Run Mode, output to motor runs at jog parameter frequency					
			OFF	Inverter is in Stop Mode					
09	2CH	2-stage Acceleration and Deceleration	ON	Frequency output uses 2nd-stage acceleration and deceleration values					
			OFF	Frequency output uses standard acceleration and deceleration values					
11	FRS	Free-run Stop	ON	Causes output to turn OFF, allowing motor to free run (coast) to stop					
			OFF	Output operates normally, so controlled deceler- ation stops motor					
12	EXT	External Trip	ON	When assigned input transitions OFF to ON, inverter latches trip event and displays E12					
			OFF	No trip event for ON to OFF, any recorded trip events remain in history until Reset					
13	USP	Unattended Start Protection	ON	On powerup, the inverter will not resume a Run command (mostly used in the US)					
			OFF	On powerup, the inverter will resume a Run command that was active before power loss					

Configuring Drive Parameters

3–34

3–35

		Input Fu	nction Su	immary Table		
Option Code	Terminal Symbol	Function Name	Description			
15	SFT	Software Lock	ON	The keypad and remote programming devices are prevented from changing parameters		
			OFF	The parameters may be edited and stored		
16	AT	Analog Input Voltage/current	ON	Terminal [OI] is enabled for current input (uses terminal L for power supply return)		
		Select	OFF	Terminal [O] is enabled for voltage input (uses terminal [L] for power supply return)		
18	RS	Reset Inverter	ON	The trip condition is reset, the motor output is turned OFF, and powerup reset is asserted		
			OFF	Normal power-ON operation		
19	PTC	PTC Thermistor Thermal Protection	ANLG	When a thermistor is connected to terminals [5] and [L], the inverter checks for over- temperature and will cause trip event and turn OFF output to motor		
			OPEN	A disconnect of the thermistor causes a trip event, and the inverter turns OFF the motor		

Output Terminal Configuration

The inverter provides configuration for logic (discrete) and analog outputs, shown in the table below.

	"C" Fu	Run Defaults					
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
C_21	Terminal [11] function	Select function for terminal	×	01	01	01	
	OUT-TM 1 FA1	section)		[FA1]	[FA1]	[FA1]	
C_22	Terminal [12] function	Select function f or terminal	×	00	00	00	_
	OUT-TM 2 RUN	[12], 6 options (see next section)		[RUN]	[RUN]	[RUN]	
C_23	[FM] signal selection	Select function for terminal	×	00	00	00	_
	MONITOR A-F	[FM], 3 options (see next section)		[A-F]	[A-F]	[A-F]	

The output logic convention is programmable for terminals [11] and [12]. The opencollector output terminals [11] and [12] default to normally open (active low), but you can select normally closed (active high) for these terminals in order to invert the sense of the logic. You can invert the logical sense of the alarm relay output as well.

"C" Function			Run	Defaults			
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
C_31	Terminal [11] active state (–FU)	Select logic convention, two option codes:	×	_	00	_	_
	OUT-TM O/C-1 NO	00normally open [NO] 01normally closed [NC]					
	Reserved (-FE / -FR)	(reserved) DO NOT EDIT	×	00	_	00	_
	(not displayed)						
C_32	Terminal [12] active state (–FU)	Select logic convention, two option codes: 00normally open [NO] 01normally closed [NC]	×		00	_	
	OUT-TM O/C-2 NO						
	Terminal [11] active state (–FE / –FR)	(reserved) DO NOT EDIT	×	00	_	00	
	OUT-TM O/C-1 NO						
C_33	Alarm relay active state	Select logic convention, two	×	01	01	01	_
	OUT-TM O/C-RY NO	option codes: 00normally open [NO] 01normally closed [NC]					

3

3-

Output Function Summary Table – This table shows all six functions for the logical outputs (terminals [11], [12]) at a glance. Detailed descriptions of these functions, related parameters and settings, and example wiring diagrams are in "Using Intelligent Output Terminals" on page 4–21.

Output Function Summary Table						
Option Code	Terminal Symbol	Function Name	Description			
00	RUN	Run Signal	ON	when inverter is in Run Mode		
			OFF	when inverter is in Stop Mode		
01	FA1	Frequency Arrival	ON	when output to motor is at the set frequency		
		Speed	OFF	when output to motor is OFF, or in any accelera- tion or deceleration ramp		
02	FA2	Frequency Arrival Type 2 – Over-	ON	when output to motor is at or above the set frequency, even if in accel. or decel. ramps		
		frequency	OFF	when output to motor is OFF, or at a level below the set frequency		
03	OL	Overload Advance Notice Signal	ON	when output current is more than the set thresh- old for the overload signal		
			OFF	when output current is less than the set threshold for the overload signal		
04	OD	Output Deviation for PID Control	ON	when PID error is more than the set threshold for the deviation signal		
			OFF	when PID error is less than the set threshold for the deviation signal		
05	AL	Alarm Signal	ON	when an alarm signal has occurred and has not been cleared		
			OFF	when no alarm has occurred since the last clearing of alarm(s)		

Analog Function Summary Table – This table shows all three functions for the analog output [FM] (frequency meter) terminal. Detailed descriptions, related parameters and settings, and example wiring diagrams are in "Analog and Digital Monitor Output" on page 4–30.

Analog Function Summary Table						
Option Code	Function Name	Description				
00	Analog Frequency Monitor	PWM (pulse-width-modulated) voltage output that has a duty cycle proportional to the inverter output frequency				
01	Analog Current Output Monitor	PWM (pulse-width-modulated) voltage output that has a duty cycle proportional to the inverter output current to the motor. It reaches 100% duty cycle when the output reaches 200% of the rated inverter current.				
02	Digital Frequency Output Monitor	FM (frequency-modulated) voltage output with a constant 50% duty cycle. Its frequency = inverter output frequency.				

3

Output Function Adjustment Parameters

The following parameters work in conjunction with the intelligent output function, when configured. The overload level parameter (C_41) sets the motor current level at which the overload signal [OL] turns ON. The range of settings is from 0% to 200% of the rated current for the inverter. This function is for generating an early warning logic output, without causing either a trip event or a restriction of the motor current (those effects are available on other functions).

The frequency arrival signal, [FA1] or [FA2], is intended to indicate when the inverter output has reached (arrived at) the target frequency. You can adjust the timing of the leading and trailing edges of the signal via two parameters specific to acceleration and deceleration ramps, C_42 and C_43.

The Error for the PID loop is the magnitude (absolute value) of the difference between the Setpoint (desired value) and Process Variable (actual value). The PID output deviation signal [OD] (output terminal function option code 04) indicates when the error magnitude has exceeded a magnitude you define.

\cup	
r	
Ņ	\sim
×	()
(D	0
_	—
U	<u> </u>
a	
L.	B
Ð	L
n	ſ
2	
Ð	ž
t	9
(D	
~	
0)	

"C" Function			Run	Defaults			
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
C_41	Overload level setting	Sets the overload signal level	×	Rated current for each			
	OV Load 03.00A	between 0% and 200% (from 0 to two times the rated current of the inverter)			inverter		
C_42	Frequency arrival setting for acceleration	Sets the frequency arrival setting threshold for the output	×	0.0	0.0	0.0	Hz
	ARV ACC 000.0Hz	trequency during acceleration					

"C" Function			Run	Defaults			
Func. Code	Name / SRW Display	Description	Mode Edit	-FE (CE)	-FU (UL)	-FR (Jpn)	Units
C_43	Arrival frequency setting for deceleration	Sets the frequency arrival setting threshold for the output	×	0.0	0.0	0.0	Hz
	ARV DEC 000.0Hz	frequency during deceleration					
C_44	PID deviation level setting	Sets the allowable PID loop error magnitude (absolute	×	3.0	3.0	3.0	%
	OV PID 003.0%	value), SP - PV, range is 0.0 to 100%, resolution is 0.1%					
C_91	Debug mode selection	(Reserved) DO NOT EDIT	×	00	00	00	
	INIT DEBG OFF						