DURAPULSE GS30 AC Drive Quick-Start Guide

gS30 AC Drives installation instructions SENSORLESS VECTOR CONTROL VARIABLE FREQUENCY MICRO-DRIVE Please read this instruction sheet thoroughly before installation and retain for later reference. " - To ensure the safety of operators and equipment, only qualified personnel
familiar with AC drives should install, wire, program, and operate the GS30
drive. Always read this instruction sheet thoroughly before using the GS30 drive, especially the WARNING drive. Always read this instruction sheet thoroughly before using the GS30 drive especially
DANGER and CAUTION notes. If you have any questions, please contact AutomationDirect.

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY

- The ground terminal of the GS30 drive must be grounded correctly. The grounding method must comply with the laws of the country where the GS30 drive is to be installed. After power has been turned off the capacitors in the GS30 drive may retain a charge for
several minutes. To prevent personal injury visually verify that the "CHARGE" LED has several minutes. To prevent personal injury, visually verify that the "CHARGE" LED has
turned off. Then measure to confirm that the DC bus voltage level between terminals (+1) and (-) is less than 25VDC before touching any terminals. (Capacitor discharge will take at east 5 minutes for most GS30 models)
- The CMOS ICs on the internal circuit boards of the GS30 drive are sensitive to static electricity. Please DO NOT touch the circuit boards with your bare hands before taking anti-static measures. Never disassemble the internal components or circuits. Whanges. Allow the internal DC bus capacitors in the GS30 drive sufficient time to discharg prior to making changes in power or control wiring. Failure to do so may result tin short circuit and fire. To ensure personal safety, lllow DC bus voltage to discharge to a safe level before making wiring changes to the GS30 drive.
- DO NOT install the GS30 drive in locations subject to high temperature, direct sunlight, or

Never apply power to the output terminals U/T1, V/T2, W/T3 of the GS30 drive. If fault actions to reset the fault before attempting to operate the GS30 drive.
DO NOT use Hi-pot test for internal components. The semi-conductors in the GS30 drive are easily damaged by high voltage.

- Long motor lead lengths may result in reflective wave due to impedance mismatch betwee the motor cable and the motor. Reflective wave may damage the insulation of the motor. To avoid the posssibility of reflective wave damage, use an inverter-rated motor with an issulation rating of 1600 volts. Aload reactor or oung Iter installed between the GS30 drive and motor will help to mitigate reflective wav
Nominal supply voltage to the GS30 drive should be less than or equal to 240/480 volts AC depending on GS30 model.
Nom inal supply current capacity should be less than or equal to 100kA for Frame A-F models. For Frames G, H, and l, ratings vary from 5 kA to 10 kA - please see drive spec sheets. corrosive gases or liquids.
-The GS30 drive must be stored within an ambient temperature range from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and relative humidity range of 0% to 90% without condensation.
- o not apply AC power to the GS30 drviv with the front cover removed. Following a fault of correction capacitors in the main AC supply circuit to the GS30 drrive. Do not install power the main AC supply circuit to the GS30 drive to prevent drive faults
power to R/LI, S/L2, and T/L3. For 1 -phase models AC input powerto R/L and S/ L2. (For applicability of 1-phase input power, please refer to Chapter 1 of the DURApulse GS30 AC Drives User Cruat futumationoirect.co
Ground from the power supply
Drive power to the motor (U, V, W on T1, T2, T3) (For use with 3-phase motors only!)
Ground to the motor
OI and STO2 (both must be wired through appropriate N. C. safety-ated contacts to DCM or the factory-installed jumpers must be left in place)
With this minimal wiring, the drive can be operated via the keypad to test the motor and drive installation
See the "Parameter Set Up" (page 4) section to configure the drive for RECOMMENDED SAFETY WIRING

We strongly recommend that customers use the STO safety feature.

The Safe Torque Off (STO) function turns off the power supplied to the motor through the hardware, so that the motor cannot produce torque. This method of removing power from the motor is considered an emergency stop, also known as "coast to stop."
To use this feature, disconnect the appropriate factory-installed jumpers and wire a safety relay or safety PLC
as shown. The E-Stop pushbutton should be wired through a Safety Relay or PLC to meet Category 3 safety as shown. The E-Stop pushbutton should be wired through a Safety Relay or PLC to meet Category 3 safety requirements. See User Manual Appendix E for wiring the GS30 with STO.

WIRING DIAGRAMS
FI JUMP
If the power distribution system supplying the GS30 AC drive is a floating (IT) or an asymmetric ground system, the RFI jumper must be removed.Removing the RFI jumper uncouples the internal RFI capacitor (filter capacitor) between the GS30 drive frame and circuitry to avoid damaging those circuits and (according to IEC 61800-3) to reduce ground leakage current.
GS30 Frame A through G

Loosen the

GS30 Framel

1) Remove the RFI ON сUIT)
MAIN WIRING (POWER CIRCUTI) Main-Circuit Terminals" (page 2).
GS30 Frames A through G :
*Note that 1-phase drives do not have a T/L3 terminal.

GS30 Frames hand I:
Input: three-phase power

sso Control terminal Wiring (All frame Sizes)

Wiring Precautions
1）The factory default condition is +24 V STO1／STO2 shorted by jumper，as shown in the block 1 of the figure above．Refer to the wiring chapter of the User Manual for more details．
2）The +24 V power supply for safety function is only for STO use and cannot be used for other purposes． 3）The RELAY terminal uses the PCB terminal block：

Tighten the wiring with a 2.5 mm （wide）$\times 0.4 \mathrm{~mm}$（thick）slotted screwdriver． ．The ideal length of stripped wire at the connection side is $6-7 \mathrm{~mm}$ ．
When wiring bare wires，make sure they are perfectly arranged to go through the wiring holes．
The control circuit terminal uses a spring clamp terminal block：
－Tighten the wiring with a 2.5 mm （wide）$\times 0.4 \mathrm{~mm}$（thick）slotted screwdriver
The ideal length of stripped wire at the ection side is 9 mm

recommended models or dimensions for ferrule terminals

Wire Gauge	Manufacturer	Model Name	A（MAX）	B（MAX）	D（max）	w（max）
0.25 mm 2 ［24 AWG］	Phoeni Contact	Al 0，25－8 YE	12.5	8	2.6	1.1
0.34 mm ［ 22 AWG ］	Phoenix Contact	Al 0，34－8 TQ	12.5	8	3.3	1.3
$0.5 \mathrm{mm2}$［20 AWG］	Phoenix Contact	Al $0,5-8 \mathrm{WH}$	14	8	3.5	1.4
	Z＋F	V30AE000006	14	8	2.6	1.15

SPECIFICATIONS FOR WIRING TERMINALS－MAIN－CIRCUIT TERMINALS

Notes：
－If you install at $\mathrm{Ta} 55^{\circ} \mathrm{C}$ above environment（all frames）or $40^{\circ} \mathrm{C}$（Frame H, I ，with conduit box），please use copper wire with a 600 V voltage rating and temperature resistance of $90^{\circ} \mathrm{C}$ or higher
－For UL compliant installation，you must： 1）Use $75^{\circ} \mathrm{C}$ temper
temperature wire．
2）Use the specific ring lug part listed in the table below．
3）Use crimp tool KST2000D－1322 or IZUMI 5N18 for 22－8AWG wire，or
IZUMI 9H－60 for 6－4AWG wire．

Figure 1.					\bigcirc Figure	4 Heat sh ய゙ Wire		
	rive Models	Max Wire Gauge	$\begin{gathered} \hline \text { Min Wire } \\ \text { Gauge } \end{gathered}$	$\begin{gathered} \text { Screw } \\ \text { Size } \end{gathered}$	$\begin{aligned} & \text { Torque } \\ & (\pm 10 \%) \end{aligned}$	Ring Lug Dimensions（mm）		
$\left\|\begin{array}{c} \mathbb{d} \\ \stackrel{訁}{\mathbf{N}} \end{array}\right\|$	GS31－20P5	$\begin{gathered} \begin{array}{c} 14 \mathrm{AWG} \\ {\left[2.5 \mathrm{~mm}^{2}\right]} \end{array} \end{gathered}$	$\begin{gathered} \text { 14AWG } \\ {\left[2.5 \mathrm{~mm}^{2}\right]} \end{gathered}$	M3．5	$\begin{gathered} 9 \mathrm{~kg}-\mathrm{cm} \\ {[7,8 \mathrm{lb-in}]} \\ {[0.88 \mathrm{~N} \cdot \mathrm{~m}]} \end{gathered}$	Dimension	Value	Min／Max
	GS33－21P0		16 AWG			B	3.2	Max
			$\underline{11.5 ~ m m] ~}$			c	4.8	Min
	GS33－20P5		$\begin{gathered} \text { 18AWG } \\ {\left[0.75 \mathrm{~mm}^{2}\right]} \end{gathered}$			d	4.1 3	Max
	GS33－40P5					E	13.0	Min
						F	4.2	Min
	GS33－41P0					w	6.6	Max
						t	0.8	Max
		${ }_{[4}^{12 A W G}$	$\begin{aligned} & 12 \mathrm{AWG} \\ & {\left[4 \mathrm{~mm}^{2}\right]} \end{aligned}$	M4	$15 \mathrm{~kg}-\mathrm{cm}$ $\left[\begin{array}{ll}{[13,0 \mathrm{Ib}-\mathrm{in} .]} \\ {[1,47 \mathrm{~N} \cdot \mathrm{~m}]}\end{array}\right.$ $[1.47 \mathrm{~N} \cdot \mathrm{~m}]$	Dimension	Value	Min／Max
	GS31－21P0					A	12.1 3.6 6.	Max
						c	6.1	Min
合	GS33－22P0					D	5.6	Max
	GS33－42PO		$\begin{gathered} \begin{array}{c} 14 \mathrm{AWG} \\ {\left[2.5 \mathrm{~mm}^{2}\right]} \end{array} \end{gathered}$			d2	4.3	Min
						E	13.0 4.5	${ }_{\text {Min }}$
						w	7.2	Max

	IFICATIONS	WIRING	ERMINALS	MAIN－C	CUIT TERM	NALS（CON	INUED	
	ive Models	Max Wire Gauge	Min Wire Gauge	$\begin{gathered} \text { Screw } \\ \text { Size } \end{gathered}$	Torque （ $\pm 10 \%$ ）	Ring Lug D	nensio	（mm）
	GS31－22P0	$\begin{gathered} 8 \mathrm{AWG} \\ {\left[10 \mathrm{~mm}^{2}\right]} \end{gathered}$	$\begin{aligned} & 8 \mathrm{AWG} \\ & {\left[10 \mathrm{~mm}^{2}\right]} \end{aligned}$	M4	$20 \mathrm{~kg}-\mathrm{cm}$$[17,4 \mathrm{~b} . \mathrm{in}]$$[1,96 \mathrm{Nm}]$ ［1．96 N．m］	Dimension	Value	Min／Max
						A	17.8	Max
	GS31－23P0					B	5.0	Max
	GS33－25P0					c	6.1	Min
5			10AWG			d2	4.3	Min
	GS33－23P0		$\left[6 \mathrm{~mm}^{2}\right]$			E	13.0	Min
	GS33－45P0		12AWG			F	5.5	Min
						W	10.5	Max
	GS33－43P0		14AWG			t	1.2	Max
$\begin{aligned} & \text { a } \\ & \text { Be } \end{aligned}$		$\begin{aligned} & 8 \mathrm{AWG} \\ & {\left[10 \mathrm{~mm}^{2}\right]} \end{aligned}$				Dimension	Value	Min／Max
	6S33－27P5		$\begin{gathered} 8 \mathrm{AWG} \\ {\left[10 \mathrm{~mm}^{2}\right]} \end{gathered}$	M4	$\left.\begin{array}{c}20 \mathrm{~kg}-\mathrm{cm} \\ {[17,4 \mathrm{lb}-\mathrm{in} .]}\end{array}\right]$ $[1.96 \mathrm{~N} \cdot \mathrm{~m}]$	A	17.8	Max
						B	5.0	Max
	6533－4010					c	6.1	Min
						d2	7.2 4.3	$\mathrm{Max}_{\text {Min }}$
	GS33－47P5		10AWG			E	13.0	Min
						F	5.5	Min
						w	10.5	Max
						t	1.2	Max
$\begin{aligned} & \text { u } \\ & \text { é } \end{aligned}$	GS33－2015	4AWg	4AWG	м5	$25 \mathrm{~kg}-\mathrm{cm}$$[21,7 \mathrm{lb}-\mathrm{in}$. ［2．45 N．m］	Dimension	Value	Min／Max
						A	27.1	Max
	GS33－2010					B	6.1	Max
		$\begin{aligned} & \text { 6AWG } \\ & {\left[16 \mathrm{~mm}^{2}\right]} \end{aligned}$	$\begin{aligned} & \text { 6AWG } \\ & {\left[16 \mathrm{~mm}^{2}\right]} \end{aligned}$			¢	10.5 11.5	${ }_{\text {Max }}^{\text {Min }}$
						d2	5.3	Min
	6S33－4015					E	13.0	Min
						F	$\begin{array}{r}6.5 \\ \hline 126\end{array}$	${ }_{\text {Min }}$
	GS33－4020					t	1.7	Max
	GS33－2020	${ }_{\left[35 \mathrm{~mm}^{2}\right]}^{2 \mathrm{AWG}}$	${ }_{\left[35 \mathrm{~mm}^{2}\right]}^{2 \mathrm{AWG}}$	м6	$40 \mathrm{~kg}-\mathrm{cm}$ ［34，7 lb－in． ［3．92 N．m	Dimension	Value	Min／Max
						A	35.0	Max
						B	9.0	Max
						c	13.3	Min
	6S33－4030					d	14.0 6.2	$\mathrm{Max}_{\text {Min }}$
						E	13.0	Min
						F	10	Min
	GS33－4025		$\begin{gathered} 4 \mathrm{AWG} \\ {\left[25 \mathrm{~mm}^{2}\right]} \end{gathered}$			w	19.5	Max
						t	1.8	Max
			${ }_{\left[16 \mathrm{~mm}^{2}\right]}^{\text {6AWG }}$	M8	$80 \mathrm{~kg}-\mathrm{cm}$ ［ $69.4 \mathrm{lb}-\mathrm{in}$ ．］ ［7．84 N．m］	Dimension	Value	Min／Max
	6S33－2025	$\left.{ }_{[25} \mathrm{mm}^{2}\right]$				，	35.0	Max
						B	9.0	Max
	GS33－2030	$\begin{gathered} \text { 2AWG } \\ {\left[35 \mathrm{~mm}^{2}\right]} \end{gathered}$				，	13.3	Min
						d	14.0	Max
						d2	${ }_{6}^{6.2}$	$\underset{\text { Min }}{\text { Min }}$
	GS33－4040					F	10	Min
						w	19.5	Max
						t	1.8	Max
	GS33－4050	$3 / 0 \mathrm{AWG}$$\left[95 \mathrm{~mm}^{2}\right]$	$\underset{\left[25 \mathrm{~mm}^{2}\right]}{4 \mathrm{AWG}}$	M8	$80 \mathrm{~kg}-\mathrm{cm}$ ［69．4 lb－in． ［7．84 N．m］	Dimension	Value	Min／Max
						A	35.0	Max
						B	9.0	Max
						－	13.3 14.0	${ }_{\text {Max }}^{\text {Min }}$
						d2	6.2	Min
	GS33－4060		1／0 AWG ［50 mm²］			E	13.0	Min
						F	10	Min
						w	19.5	Max
						t	1.8	Max

DURAPulse GS30 AC Drive Quick-Start Guide

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
SPECIFICATIONS \\
Drive Models
\end{tabular}}} \& R Wiring \& ERMINAL \& MAIN-C \& CUIT TERM \& NALS (con \& InUE \& \\
\hline \& \& Max Wire Gauge \& Min Wire Gauge \& \[
\begin{gathered}
\text { Screw } \\
\text { Size }
\end{gathered}
\] \& \begin{tabular}{l}
Torque \\
(\(\pm 10 \%\))
\end{tabular} \& \multicolumn{3}{|l|}{Ring Lug Dimensions (mm)} \\
\hline \multirow{10}{*}{\[
\overline{\mathrm{O}}
\]} \& GS33-2040 \& \multirow{10}{*}{300 MCM
\(\left[150 \mathrm{~mm}^{2}\right]\)} \& \multirow{5}{*}{\(3 / 0 \mathrm{AWG}\)

$95 \mathrm{~mm}^{2}$} \& \multirow{10}{*}{м8} \& \multirow{10}{*}{$80 \mathrm{~kg}-\mathrm{cm}$ $[69.4 \mathrm{lb}-\mathrm{n}$. [7.84 N.m]} \& \& \&

\hline \& \& \& \& \& \& Dimension \& Value \& Min/Max

\hline \& \& \& \& \& \& A \& 35.0 \& Max

\hline \& GS33-2050 \& \& \& \& \& B \& 9.0 \& Max

\hline \& \& \& \& \& \& D \& 14.3 \& Max

\hline \& \multirow{3}{*}{GS33-4075} \& \& \multirow[b]{3}{*}{$$
\begin{aligned}
& \text { 2/0 AWG } \\
& {\left[70 \mathrm{~mm}^{2}\right]}
\end{aligned}
$$} \& \& \& d2 \& 6.2 \& Min

\hline \& \& \& \& \& \& E \& 13.0 \& Min

\hline \& \& \& \& \& \& F \& 10 \& Min

\hline \& \& \& \& \& \& w \& $\frac{19.5}{18}$ \& $\mathrm{Max}^{\text {max }}$

\hline \& GS33-4100 \& \& | 3/0 AWG |
| :--- |
| $[95 \mathrm{~mm}$ | \& \& \& \& \&

\hline
\end{tabular}

Descriptions of LED Functions	
RUN	Steady ON: Drive is running. Blinking: Drive is stopping or in base block. Steady OFF: Drive is not running.
FWD	Steady ON: Drive is operating in Forward mode. Blinking: Drive is changing direction. Steady OFF: Drive is operating in Reverse mode.
REV	Steady ON: Drive is operating in Reverse mode. Blinking: Drive is changing direction. Steady OFF: Drive is operating in Forward mode.
STOP	Steady ON: Drive is stopped or in the process of stopping. Blinking: Drive is in standby (run but does not output) Steady OFF: Drive is not currently executing an operational (STOP) command. NOTE: The ability to STOP the drive from the keypad is effective ONLY if the drive is configured to RUN and/or STOP from the keypad. Keypad STOP can be disabled by parameter 00.32, Digital Keypad STOP Function.
PLC	Steady ON: PLC STOP (PLC 2) initiated. Blinking: PLC Run (PLC1) initiated. Steady OFF: No PLC functions implemented (PLC 0).

KEYPAD NAVIGATION EXAMPLE

DIGITAL KEYPAD FUNCTIONS AND

 IndICATIONSDescription of the functions of the keys and

NOTE: Drive default is Remote (AUTO) mode. There is no indication on the keypad of the mode. Local mode can be set by changing
Parameter POO.21 via the keypad, GS4-KPD software.

Instruction	Press Key	Display Will Show	
First screen to display after power up.	n/a	Displays the present frequency setting of the drive	
Press MENU once from startup.	menu	Displays the actual output frequency of the drive	
Press MENU twice from startup.	menu	Displays user defined output	
Press MENU three times from startup.	menu	Displays output current	
Press MENU four times from startup. Displays Frd if the drive is currently configured for Forward operation. Scrol with the dial to change to Reverse. PresENTER to confirm the change.	MENU,ENTER	Displays the orward comman if configured for Forward operation	
		Displays the Reverse command fonfigured for Reverse operation	$\substack{\text { RUN } \\ \text { RWN } \\ \text { REV }} \underset{\sim}{\text { FLOP }}$
Press MENU five times from startup. Displays the current PLC setting. Scroll with the dial to change the PLC setting, then press ENTER to confirm.	$\begin{aligned} & \text { MENU, } \\ & \text { ENTER } \end{aligned}$	Displays the current PLC setting.	
	MENU, ENTER	Parameter Read/ Write function	
From the Frequency setting, Actual Frequency, User, Amps, or Frd/Rev screen, press ENTER to bring up the parameter dial to change the parameter number as needed, then press ENTER to alter the parameter value.	enter enter	Displays the parameter number	
From the parameter number screen, press ENTER to bring up the curent value of the selected parameter. Scroll with the dial to adjust the value. Press ENTER again to confirm the choice.	Enter ENTER	$\begin{aligned} & \text { Displays the value } \\ & \text { of the selected } \\ & \text { parameter } \end{aligned}$	
Once a desired parameter value has been set using the Dial, press ENTER to save the choice and display End message.	enter	End message. Displays when data has been accepted and stored	
Displays when an external fault is detected.	n/a	$\begin{array}{\|l} \text { External fault } \\ \text { message } \end{array}$	
Displays when data is not accepted or the value exceeded	n/a	Error message.	
Scroll sequentially through the suggested parameters (listed on page 4), and set those parameters as needed for your application. Consult User Manual for additional parameters. After changing all of the applicable parameters, press "MENU" key repeatedly to return to the Menu screen.			

GS30 Fault Codes

See Chapter 6 of the User Manual for more details.

VAUTOMATIONDIRECT

Fault Codes	
0: No Error	49: External Fault input (EF)
1: Overcurrent during Accel (ocA)	50: Emergency Stop (EF1)
2: Overcurrent during Decel (ocd)	51: External Base Block (bb)
3: Overcurrent during constant speed (ocn)	52: Password Error (Pcod)
4: Ground Fault (GFF)	54: Communication Error (CE1)
6: Overcurrent during Stop (ocS) 7: Overvoltage during Accel (ovA)	55: Communication Error (CE2) 56: Communication Error (CE3)
8: Overvoltage during Decel (ovd)	57: Communication Error (CE4)
9: Overvoltage during constant speed (ovn)	58: PC Communication Time Out (CE10)
10: Overvoltage during Stop (ovs)	61: Y- Delta connection Error (ydc)
11: Low voltage during Accel (LVA)	62: Decel Energy Backup Error (deb)
12: Low voltage during Decel (Lvd)	63: Slip Error (osL)
13: Low voltage during constant speed (Lvn)	72: STO loss 1 (STL1)
14: Low voltage during Stop (LVS)	76: Safety Torque Off (STO)
15: Input phase loss (OrP)	77: STO loss 2 (STL2))
16: IGBT Overheat 1 ((oH1) ${ }^{\text {a }}$	
17: Internal Key Parts Overheating (oH2)	79: U Phase over current before run (Aoc)
18: Thermistor 1 open (tH10)	80: V Phase over current before run (boc)
19: Capacitor hardware error (tH2O)	81: W Phase over current before run (coc)
21: Drive over-load (ol)	82: U Phase output phase loss (OPL1)
22: Electronics thermal relay protection 1 (EoL1)	83: V Phase output phase loss (0PL2)
23: Electronics thermal relay protection 2 (EoL2)	84: W Phase output phase loss (0PL3)
24: Motor Overheat-PTC (oH3)	87: Drive overload in low frequency (0.3)
26: Over Torque 1 (ot1)	89: Intitial rotor position detection error (roPd)
27: Over Torque 2 (ot2)	111: IncOM time-out error (InerCOM)
28: Under current (uc)	121: Internal communication error (CP20)
29: Limit error (LiT)	123: Internal communication error (CP22)
31: Memory read-out error (cF2)	124. Internal communication error (CP30)
33: U phase current sensor detection error (cd1)	126: Internal communication error (CP32)
35: W phase current sensor detection error (cd3)	128: Over-torque 3 (ot3)
36: Clamp current detection error (Hd0)	129: Over-torque 4 (0t4)
37: Over-current detection error (Hd1)	134: Electronics thermal relay 3 protection (EOL3)
40: Auto tuning error (AuE)	135: Electronics thermal relay 4 protection (EOL4) 140: GFF detected when power on (Hd6)
42: PG feedback error (PGF1)	141: GFF occurs before run (b4GFF)
43: PG feedback loss (PGF2)	142: Auto tuning error 1 (AUE1)
44: PRG feedback stall (PGF3)	143: Auto tuning error 2 (AUE2)
45: Encoder slip error (PGF4) 48. Analog centent (ACE)	144: Auto tuning error 3 (AUE3)

DURAPulse GS30 AC Drive Quick-Start Guide

introduction - HOW TO Get Started

Autom ationdirect.com would like to thank you for your purchase of the Durapulse GS30 AC drive. The GS30
drive is a state-of-the-art, full-featured AC drive drive is a state-offthe-art, full-featured AC drive. The Quick-Start Guide below will introduce you to many of STO (Safe Torque Off)/ Emergency Stop
The GS30 drive offers Safe Torque Off (STO) functionality, instead of a standard Emergency Stop circuit. STO provides the ability to immediately turn off the output of the GS30 drive in the event of an emergency, without the need for an emergency stop contactor between the drive and motor.
Please see the Control-Circuit Wiring diagrams (page 1) for how to wire the STO circuit. From the factory, he GS30 STO terminals are jumpered and the STO circuitry of the drive is bypassed. STO is recommended for personnel safety.
After wiring the drive (but before applying power), the first thing you should do is press the E-stop button (or otherwise break the safety circuit) and verify that the circuit between the STO1/STO2 terminals and the STO
$+24 V$ terminal is not connected. If these circuits are open, the STO feature will stop all power from going to the motor and there will be no danger of unexpected movement when you power up the drive.
Powering Up the GS30 Drive
Apply AC line power to the GS30 drive, but don't engage the safety circuit yet (keep the E-stop PB pushed in). Starting. Stopping, and Controlling the Speed of the GS30 Drive
Out of the box GS30 drives are set to use the keypad buttons to RUN and STOP the drive and vary the drive speed. The drive can also be configured to run from potentiometers, external pushbuttons, Ethernet
communication, etc.
Do not attempt to run the motor yet. Certain parameters (especially the motor protection parameters) must be set first.
The tables below list those parameters typically used in most applications. You can navigate to any of these parameters through the keypad. (Refer to page 3 for information and instructions for using the Digital Keypad.)
All applications need to configure the parameters in the "Quick Configuration" table. At minimum, you MUS configure these motor parameters before operating the drive
01.00 Motor Max oupulfrequen (his will typically be eith 230 Hz
.2.

- 05.01 Motorl Rated Amps (depends on the motor

The main configuration parameters required to get your drive up and running are included in this guide. parameters need to be configured. It is NOT necessary to configure every parameter listed in the tables in the User Manual, use only those you need.
Parameter Groups

Group Number	Group Category
00	Drive Config
01	Basic Config
02	Digital I/O Config
03	Analog //O Config
04	Multi-Step Speed Config
05	Motor Config
06	Protection Config
07	Special Parameters
08	PID Config
09	Communications Config
10	Speed Control Config
11	Advanced Config
12	Tension Config
13	Macro Config
14	Protection (2) Config

After configuring the minimum settings, you can now engage the safety circuit. The RUN and STOP/RESET until the "F x " appeand stop the drive. To adjust the output frequency, press the MENU button repeatedly the "Fxx" appears for "Frequency Setpoint". Use the Digital Dial to adjust the frequency.

Parameter Set Up
DURAPULSE GS3O AC Drives offer parameter setup from the keypad for some of the most common drives
applications. Choose parameters from the table below, then set the applicable parameters for that To Configure Parameters:
From the power up screen

1) Press MENU until you see $\mathbf{H} 0.00$ (this is the actual drive frequency) and press ENTER. 2) Use the Dial to select the parameter group you want and press ENTER. 3) Use the Dial to select the parameter number you want within that group and press ENTER 4) Change the value of the parameter using the Dial and press ENTER. 5) Press MENU to exit back to the main menu.
2) Repeat as needed until all required parameters are configured.$\overline{\text { Please refer to the user manual if you need more detailed information about the }}$ parameters.

DURAPULEE GS30 Parameter Settings - Quick Configuration*					
Parameter		Description	Range	Default	User
Group	\#				
00	00	GS30 Model ID	Read Only	n/a	
00	01	Displays AC drive rated current	Display amperage	n/a	
00	02	Restore to defaultta	$0=$ No function 5 = Reset kWH disp protect 6=Reset PLC 7=Reserved $8=$ Keypad doesn't respond $10=$ Reset 60 Hz defaults $11=$ Reset 50 Hz defaults (keep user config) $12=$ Reset 60 Hz defaults (keep user config)	0	
00	06	Firmware Version	Read Only	n/a	
00	10	Control Method	$0=$ Speed mode $2=$ Torgue mode	0	
00	11	Velocity Mode		0	
00	16	Duty Selection	$0=$ Variable Torque 1=Constant Torque	1	
00	20	Frequency Command Source		0	
00	21	Operation Command Source	$\begin{aligned} & \begin{array}{l} 0=\text { Digital keypad } \\ 1=\text { EExerenal terminals } \\ \text { a Comunicaio RS-485 input } \\ 5=\text { Communication card } \end{array} \\ & \hline \end{aligned}$	0	
00	22	Stop Method	$0=$ Ramp to stop 1=Coast to stop	0	
00	23	Motor Direction Control	$\begin{aligned} & 0=\text { Enable forward/reverse } \\ & =\text { Disable reverse } \\ & \text { 2=Disable forward } \end{aligned}$	0	
01	00	Motor 1 Max Frequency	$0.00-599.00 \mathrm{~Hz}$	60	
01	01	Motor 1 Base Frequency	$0.00-599.00 \mathrm{~Hz}$	60	
01	02	Motor 1 Rated Voltage		$\begin{aligned} & 220.0 \\ & 440.0 \\ & 400 \end{aligned}$	
01	09	Startup frequency	$0.00-599.0 \mathrm{~Hz}$	0.5	
01	10	Output Frequency Upper Limit	$0.00-599.0 \mathrm{~Hz}$	59.0	
01	11	Output Frequency Lower Limit	$0.00-599.0 \mathrm{~Hz}$	0.00	
01	12	Acceleration Time 1		$\begin{aligned} & 10.00 \\ & 10.00 \\ & \hline \end{aligned}$	
01	13	Deceleration Time 1	1.45=0: 0.00-600.	$\begin{aligned} & 10.00 \\ & 10.00 \\ & \end{aligned}$	
01	20	Jog Acceleration Time	P01.45 $11: 0.000-6000.0 \mathrm{sec}$	$\begin{aligned} & 10.00 \\ & 10.00 \\ & 1 \end{aligned}$	
01	21	${ }^{\text {Jog Deceleration Time }}$		$\begin{aligned} & 10.000 \\ & 10.00 \\ & 100 \end{aligned}$	
01	22	Jog Frequency	0.00-599.0 Hz	0.5	
Assumes default $V / H z$ mode with no feedback. To change control modes see complete parameter listing in User manual. ** Reboot drive after resetting defaults. Note: Drive default is Auto mode and cannot be changed from the keyppad. For Local/Hand, use Discrete input configuration settings (PO2 OO-P02 2 7) and P00 29-P00. 31					
			(table continued next column)		

VAUTOMATIONDIRECT

DURAPULSE GS30 AC Drive Quick-Start Guide

DURAPULEE GS30 Parameter Settings - Quick Configuration (continued)									
Parameter		Description		Range					
Group				Defa	User				
07	10	Restart after fault action				$\begin{aligned} & \text { 0=Stop operation } \\ & \text { 1=Speed tracking by current speed } \\ & \text { 2=Speed tracking by minimum output frequency } \end{aligned}$		0	
07	11	Number of times to attempt autorestart after fault		0-10		0			
07	19	Fan cooling control*		$0=$ Fan is always ON $1=$ Fan is OFF after the AC motor drive stops for one minute 2=Fan is ON when the AC motor drive runs, fan is OFF when the AC motor drive stops $3=$ Fan turns ON when temperature (IGBT) reaches approximately $60^{\circ} \mathrm{C}$		3			
08	00	PID Feedback terminal selection		$0=$ Disabled $2=$ Negative PID feedback: by analog input (P03.00) =Negative PID feedback: by single-phase pulse input (DI7), without direction (P10.02) $3=$ Negative PID feet (DI7) with direction (P10.02) 4= Positive PID feedback: by an) $4=$ Positive PID feedback. by analog input (P03.00) $5=$ Positive PID 5=Positive PID feedback: by single -phase pulse input (D17), without direction (P10.02) =Positive PID feedback: by single -phase pulse input (D17), with direction (P10.02) 7=Negative PID feedback: by communication protocol $8=$ Positive PID feedback: by communication protocol		0			
08	01	Proportional gain (P)		$0.0-1000.0$ (When P08.23 bit $1=0$)$0.00-100.00$ (When Po8.23 bit $1=1$)		1.00			
08	02	Integral time (1)		$0.00-100.00$ sec.		1.00			
	03	Differential time (D)		$0.00-1.00$ sec.		0.00			
08	04	Upper limit of integral control PlD output command limit (positive limit)		0.0-100.0\%		100.0			
08	05			0.0-110.0\%		100.0			
08	06	PDD feedback value bycommunication protocol		-200.00-200.00\%		0.00			
08	07	PID delay time		${ }^{0.0} 0-2.5 \mathrm{sec}$.		0.0			
08	08	Feedback signal detection time				0.0			
08	09	Feedback signal faut treatment		$0=$ Warn and Keep Run 1=Fault and Ramp Stop 2=Fault and Coast Stop$3=$ Warn and Keep Freq		0			
08	65	PID target value source		$0=$ Freq Cmd =From Pr08-66 3-Analog 3=Analog Input6=Comm Card		0			
13	00	Application Selection				0			
* Note, not all drives come standard with fans									
Multi-function Input Selections									

Multi-function Output Selections		
	19 Extermal interupt B.B. input (Base	42=Crane function
ndication during RUN		43-Monoto speed detection $43=1$ Low curent output use with
$2=$ Operation speed reached	21=0ver-voltage	44-Low current output (use with
4=Desiried frequency reached 2 (PO2.24)	22=Over-current stal prevention	$45=$ UWW output electromagne
$5=$ Zero speed (Frequency command)	23-Operation mode	A
($6=$ Lero speed including stop	${ }^{2} 25=$ Forward command	
7=Over-torque 1 (POG.06-06.08)	$29=$ Output when frequency \geq P02.34	5 interface
$9=$ Drive is ready	30=Output when frequency < PO2.34	${ }_{\text {cards }}$
$10=$ Low voltage warning (Lv) (P06.00		66=SO our
$11=$ Maltunction indit $13=$ Overheat warrin	$33=$ zero speed (actual output	${ }_{6}^{67}$ 67
$14=$ Software brake signal indicator (P07.00)	frequency) $34=$ Zero speed including STOP (actualu	69=Maximum reel diameter reached 70=Empty reel diameter reached
$15=P \mathrm{PD}$ feedback error (P08.13, P08.14)	Output frequency)	$71=$ Broken belt detection
$16=$ Slip error (osL)	36-Error output selection 2 ((P06. 24)	72=Tension PID feedback
17=Count value reached, does not return to 0 (PO2.20)		$73=$ Over-torque 3 $74=$ Over-toraue 4
$18=$ Count value reached, return to 0	(e)	$75=$ Forward RUN status
(P02.19)	39 Position reached (P10.19)	$76=$ Reverse RUN status

AI Multi-function Input Selections		
$0=$ No function $1=$ Frequency command = Torque command (torque limit under speed mode) $3=$ Torque compensation command =PID target value $6=$ Thermistor (PTC) input value	7=Positive torque limit 8=Negative torque limit 9=Regenerative torque limit 11=PT100 thermistor torque limit 12=Auxiliary frequency input value $13=$ PID compensation value	14=Tension PID feedback signal $15=$ Line speed 17=Tension PID target value $18=$ Tension setting value $19=$ Zero-speed tension 20=Tension taper $21=$ VFSM V source

A01 Multi-function Output Selections		
0=Output frequency (Hz) $1=$ Frequency command $2=$ Motor speed (Hz) 3 =Output current (rms) 4=Output voltage $5=$ DC bus voltage 7 =Power	8=Output torque 9=Al1 percent $10=\mathrm{Al} 2$ percent 2-lq current command $14=$ Id current command $15=$ Id feedback value	$16=\mathrm{Vq}$-axis voltage command $7=\mathrm{Vd}$-axis voltage command 18=Torque command $19=$ PG2 (DI7) frequency command $21=$ RS-485 analog output $23=$ Constant voltage output (P03.32)

Environment for operation, Storage, and transportation

O NOT expose the GS30 drive to environments that contain dust, direct sunlight, corrosive/inflammable gases, high humidity, liquids, or high vibration. The salt in the air must be less than $0.01 \mathrm{mg} / \mathrm{cm}^{2}$ throughout
he year.

Installation Location		IEC60364-1/\|EC60664-1 Pollution degree 2, Indoor use only					
Surrounding Temperatur		Operation	IP20/UL Open Type	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (with derating)			
		IP40/NEMA 1/UL Open Type	$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ (with derating)				
		Installed side-by-side					
		Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Transportation: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$				
		No condensation, non-frozen					
ted Humidity			Operation: Max. 90%		Storage/Transportation: Max. 95\%		
		No condensed water					
Air Pressure			Operation/Storage: 86 to 106 kPa		Transportation: 70 to 106 kPa		
Pollution Level		IEC 60721-3					
		Operation: Class 3C2; Class 3S2		Storage: Class 2C2; Class 2S2	Transportation Class 1C2; Class 1S2		
		No concentrate					
Altitude		Operable at altitudes of $0 \sim 1000 \mathrm{~m}$. If installed at altitudes greater than 1000 m , derating is required.					
$\begin{aligned} & \text { Package } \\ & \text { Drop } \end{aligned}$	Storage	n ISTA procedure 1A (according to weight) IEC60068-2-31					
	Transportation						
Vibration	Operating	1.0mm, peak-to-peak value range from 2 Hz to $13.2 \mathrm{~Hz} ; 0.7 \mathrm{G} \sim 1.0 \mathrm{G}$ range from 13.2 Hz to 55 Hz ; 1.0 G range from 55 Hz to 512 Hz . Comply with IEC $60068-2-6$.					
	Non-operating	g 2.5 G peak, 5Hz 2 kHz : $0.015^{\prime \prime}$ maximum displacement.					
Impact	Operating	IEC/EN	60068-2-27: 15G, 11 ms				
	Non-operating	9 30 G					
Protection Level		IP20	IP40 depending on driser	Please see the GS30 Us	Manual for detais.		

To prevent personal injury, please make sure that the case and wiring are installed
according to these instructions. The figures in these instructions are only for
reference. They may be slightly different from the
reference. They may be slightly different from the one you have, but it will not affect your customer rights.

VAUTOMATIONDIRECT These installation instructions may be revised without prior notice. The most recent edition can be downloaded from the AutomationDirect web site at any time: http://www.automationdirect.com/static/manuals/index.html.

Minimum Mounting Clearances

When installing your GS3O drive, please keep the following in mind:

- Prevent fiber particles, scraps of paper, shredded wood, saw dust, metal particles, etc., from adhering to the heat sink
Install the AC motor drive in a metal cabinet. When installing one drive below another one, use a metal separation between the AC motor drives to prevent mutual heating and to prevent the risk of accidental fire
Install the AC motor drive in Pollution Degree 2 environments only: normally only nonconductive pollution In Pollution Degree 2 environments, install drives in an IP54 cabinet or in a pollution-controlled environment. Pollution Degree 2 defines an environment in which dew can form causing temporary electrical conduction,

GS30 FRames A-F

Installation Method	$\stackrel{A}{(m m)}$	$\begin{gathered} B \\ (m m) \end{gathered}$	$\begin{gathered} c \\ (m m) \end{gathered}$	Operation Temperature	
				$\begin{gathered} \text { Max } \\ \text { (w/out derating) } \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { (Derating) } \end{gathered}$
Single drive installation	50	30	-	50	60
Side-by-side horizontal installation	50	30	30	50	60
Zero stack installation	50	30	0	40	50

GS30 FRAMES G-

Installation Method	$\underset{(m m)}{A}$	$\begin{gathered} B \\ (m m) \end{gathered}$	$\underset{(m m)}{c}$	Operation Temperature	
				Max (w/out derating)	$\begin{gathered} \text { Max } \\ \text { (Derating) } \end{gathered}$
Single drive installation	100	50	-	50	60
Side-by-side horizontal installation	100	50	50	50	60
Zero stack installation	100	50	0	40	50

BLANK PAGE

