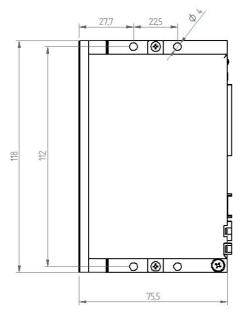
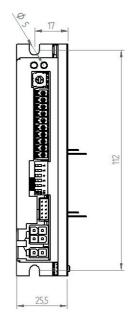


LW4D3070N2I1-00

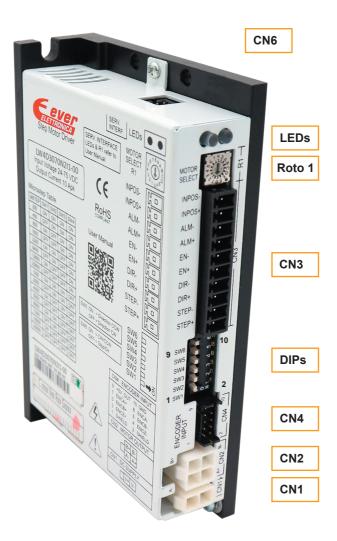

Installation instructions

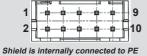

Refer to installation use and maintenance manual for more information. Available user manual at link http://www.everelettronica.it/manhw.html

2 phase step motor bipolar chopper drive technical data

- DC power supply: 24 ~ 75 Vdc
- Phase current: up to 10 Apeak
- Chopper frequency: ultrasonic 40KHz
- Emulated Step angle: Full Step, ½, ¼, 1/8, 1/16, 1/32, 1/64, 1/128, 1/5, 1/10, 1/20, 1/25, 1/30, 1/36, 1/50, 1/100 configurable by means of Dip-Switches and other step angle could be defined by software
- Protections against: over current, over/under voltage, overheating, short circuit between motor phase-tophase and phase-to-ground
- Encoder input (not isolated): 5V Differential (RS422) incremental encoder
- · Service SCI interface for programming and real time debugging
- Dimensions: 118 x 75.5 x 25.5 mm (without connectors)
- Protection degree: IP20
- Pollution degree: 2
- Working temperature 5°C ~ 40°C Storage temperature -25°C ~ 55°C
- Humidity: 5% ~ 85% not condensing

Mechanical data





Connectors:

System connection

CN1: Power supply					
	2 positions, pitch 4.2mm double row, PCB header connector				
CN1.1	PGND	PWR_I	N Negative DC power supply input		
CN1.2	VIN	PWR_I	N Positive DC power supply input		
	tor conne				
4 position	ns, pitch 4.2	2mm doub	le row, PCB header connector		
CN2.1	B/	PWR_OU	JT Motor output phase B/		
CN2.2	А	PWR_OU	JT Motor output phase A		
CN2.3	В	PWR_OU	JT Motor output phase B		
CN2.4	A/	PWR_OU	JT Motor output phase A/		
		4	(1)		
CN4: En	coder inpu	ut connec	tion		
10 positio	ons, pitch 2	2mm doubl	e row, PCB header connector		
CN4.1	SHIELD	/	Cable shield connection		
CN4.2	SHIELD	/	Cable shield connection		
CN4.3	ENCZ +	DIG_IN	Encoder Zero input positive		
CN4.4	ENCZ -	DIG_IN	IN Encoder Zero input negative		
CN4.5	ENCB +	DIG_IN Encoder Phase B input positive			
CN4.6	ENCB -	DIG_IN Encoder Phase B input negative			
CN4.7	ENCA +	DIG_IN	G_IN Encoder Phase A input positive		
CN4.8	ENCA -	DIG_IN	N Encoder Phase A input negative		
CN4.9	+5 V	PWR_OUT	PWR_OUT +5Vdc power supply output		
CN4.10	GND	PWR_OUT	Negative side of power supply		

3

10 positi	10 positions, pitch 3.5mm single row, PCB header connector			
CN3.1	STEP +	DIG_IN	Clock frequency + input (Clock up+)	
CN3.2	STEP -	DIG_IN	Clock frequency - input (Clock up -)	
CN3.3	DIR +	DIG_IN	Motor direction + input (Clock down +)	
CN3.4	DIR -	DIG_IN	Motor direction - input (Clock down -)	
CN3.5	EN +	DIG_IN	Enable + input	
CN3.6	EN -	DIG_IN	Enable - input	
CN3.7	ALM +	DIG_OUT	ALARM output collector side	
CN3.8	ALM -	DIG_OUT	ALARM output emitter side	
CN3.9	INPOS +	DIG_OUT	INPOS output collector side	
CN3.10	INPOS -	DIG_OUT	INPOS output emitter side	

CN3: Digital I/O

CN6: Service SCI interface					
4 positions, pitch 2mm double row, PCB header connector					
CN6.1	TX/RX	Transmit / Receive Line			
CN6.2	DE/RE	Drive Enable Negated / Receive Enable			
CN6.3	+5V	+5V +5V power out			
CN6.4	CN6.4 GND DNG power out				
	This connection is only				

2

possible with hardware and software provided

by Ever.

Dip-Switches Settings

Microstep	DIPs				
value	SW1	SW2		SW3	SW4
20000	OFF	OFF		OFF	OFF
10000	ON	OFF		OFF	OFF
7200	OFF	ON		OFF	OFF
6000	ON	ON		OFF	OFF
5000	OFF	OFF		ON	OFF
4000	ON	OFF		ON	OFF
2000	OFF	ON		ON	OFF
1000	ON	ON		ON	OFF
25600	OFF	OFF		OFF	ON
12800	ON	OFF		OFF	ON
6400	OFF	ON		OFF	ON
3200	ON	ON		OFF	ON
1600	OFF	OFF		ON	ON
800	ON	OFF		ON	ON
400	OFF	ON		ON	ON
200	ON	ON		ON	ON
SW5	Motor direction		SW6		Mode
OFF (default)	CW		OFF (default)		Step/Dir
ON	CCW		ON		CW/CCW

NOTE: the device reads the Dip-Switches only during the power up.

If it's necessary a setting change, shut down the system, change the settings and start up the system again to make the changes operating.

Roto-Switch R1 Settings (Motor Select)

Functionality of the Roto-Switch R1 is defined by software. Connect to a PC on Service Interface connector.

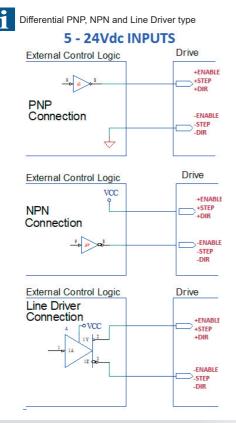
R1 Position	Configuration
0 (default)	STP-MTRL-14026E
1	STP-MTRL-14034E
2	STP-MTR-17040E
3	STP-MTR-17048E
4	STP-MTR-17060E
5	STP-MTR-23055E
6	STP-MTR-23079E
7	STP-MTRH-23079E
8	STP-MTR-34066D
9	STP-MTRH-34066D
А	STP-MTRH-34097D
В	STP-MTRH-34127D
с	STP-MTRAC-42100D
D	STP-MTRAC-42151D
E	STP-MTRAC-42202D
F	All configurations set by software

NOTE : the device reads the Roto-Switch R1 only during the Power up.

If it's necessary a setting change, shut down the system, change the settings and start up the system again to make the changes operating.

Working Status (Led)

	Visualization status Description				
	VISUAIIZATION	status	Description		
1	•	Green ON	Correct functioning, drive enable		
2	0	Green Blinking	Enable OFF, current zero		
3		Yellow ON Red OFF	Missing setting of Inominal		
4		Yellow Blinking Red OFF	Warning: connect with Service SCI kit and check with software		
5	•	Red ON Yellow OFF	Protection: Motor is in open phase condition		
6	•	Yellow OFF Red Blinking	Current protection		
7	••	Red ON (2 sec) Yellow 1 Blink	Under/Over voltage protection		
8	•000	Red ON (2 sec) Yellow 3 Blink	Thermal protection		
9	•0000	Red ON (2 sec) Yellow 4 Blink	Motor feedback error		
10	•00000	Red ON (2 sec) Yellow 6 Blink	Motor current regulation is out of range		
11	•000000	Red ON (2 sec) Yellow 7 Blink	eePLC user protection (generated by setting bit #0 of eePLC_user_settings)		
12	•0000000	Red ON (2 sec) Yellow 8 Blink	Error: connect with Service SCI and check with software		

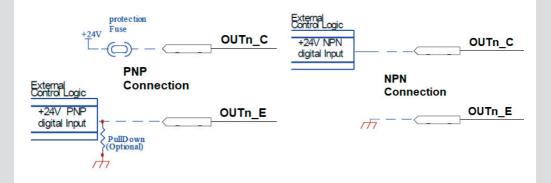

Encoder input connection

Electrically NOT-isolated digital inputs. CN4 Differential 5Vdc that meet the RS422 standard. CN4.10 +5Vdc CN4.9 Phase A-CN4.8 Phase A+ CN4.7 **5V LINE DRIVER** Phase B-CN4.6 INCREMENTAL ENCODER Phase B+ CN4.5 Zero-CN4.4 Zero+ CN4.3 Shield CN4.2 Shield CN4.1

Maximum supply current 100 mA.

GND is internally in common with power ground, this is potentially dangerous. Take all necessay measures to avoid possible contacts in the final installation.

Shield is internally connected to PE


Standard (EN)			
Characteristics	MIN.	MAX.	Unit
Supply voltage	5	24	Vdc
Inputs frequency		2	kHz
Threshold switching voltage	-	2.5	Vdc
Current at 5 Vdc		6	mA
Current at 24 Vdc		15	mA

High speed (STEP & DIR)			
Characteristics	MIN.	MAX.	Unit
Supply voltage	24	24	Vdc
Inputs frequency		250	kHz
Threshold switching voltage	-	2.5	Vdc
Current at 5 Vdc		6	mA
Current at 24 Vdc		15	mA

Digital outputs connection

Digital outputs are 5-24Vdc PNP/NPN, Iout=100mA, Fmax = 2 kHz

Mating connectors

Connector	Description
CN1	Molex 39-01-2025
CN2	Molex 39-01-2045
CN3	Phoenix 1916371
CN4	Hirose DF11-10DS-2C

Cables selection

Function	Cable		
	Minimum	Maximum	
Power supply, Motor and PE	0.5 mm ² (AWG20)	1.3 mm² (AWG16)	
Encoder input	0.08 mm ² (AWG28)	0.2 mm ² (AWG24)	
Digital Inputs and Outputs	0.08 mm ² (AWG28)	0.5 mm² (AWG20)	

Verify the installation

- Check all connection: power supply, stepper motor and control logics.
- Make sure that all settings are correct for the application.
- Make sure that the characteristics of the DC power supply are appropriate for the drive.
- If possible, remove the load from the rotor of the motor to avoid wrong movements and eventual damages.
- Supply power and make sure that the green led is ON. If the led is OFF, shut down immediately and check if all connections are correct.
- Enable the current in the motor (without STEP Clock) and, if possible, verify the presence of the holding torque.
- Execute a movement of some steps and verify if the rotation direction is the deisdered one.

If the motion direction is not the desidered one, it is possible to change if leaving the DIR input unchanged and reversing the connection of a single phase of the motor to CN2, for example A with A/.

- Disconnect the power supply, fix the motor to the load and check the full functionality.

Analysis of malfunctions

When any of the following situations occur, the drive is placed in a fault condition.

DEFECT	CAUSE	ACTION
Intervention of the themal protection.	Can be caused bue a heavy working cycle or a high current in the motor.	Improve the drive cooling by decent air flow or a fun. Consider to use a motor with a higher torque vs current rating.
Intervention of the current protection.	Short circuit on the motor powering stage(s) of the drive.	Check motor windings and cables to remove the short circuits replacing faulty cables or motor if necessary.
Intervention of the over/under voltage protection	Supply voltage out of range.	Check the value for the supply voltage.
Open phase motor protection.	Open circuit from motor windings and drive.	Check motor cables and connections to the drive.

When any of the following situations occur, the drive doesn't work and isn't placed in an error condition.

DEFECT	CAUSE	ACTION
Noisy motor movement with vibrations.	Can be caused due to a lack of power supply to a phase of the motor or a poor regulation of the winding currents.	Check the cables and connections of the motor and/or change the motor speed to exit a resonance region.
The external fuse on the power supply of the drive is burned.	Can be caused due to a wrong connection of the power supply.	Connect the power supply correctly and replace the fuse.
At high speed, the motor torque is not enough.	Can be due to a motor current self-limitation.	Increase the motor current (always within the limits), increase the supply voltage, change motor connection from series to parallel.

web: www.everelettronica.it