
��
Direct NET Host
Communications
Programs

In This Chapter. . . .
— Why do you need a communications program?
— Modes of Operation
— Protocol Components
— Controlling the Communications
— Initiating the Request
— Acknowledging the Request
— Defining the Request
— Transferring Data
— Calculating the Header Checksum
— Ending the Request
— Timing Considerations
— What part of the manual should you use next?

D
ire

ct
N

E
T

 H
os

t
C

om
m

un
ic

at
io

ns
 P

ro
g.

6–2
Direct NET Host Communications Programs

Why do you need a communications program?

Since Direct NET is a master / slave network, the master station must initiate
requests for network data transfers. If you’re using a host as the master station, you
will need to use a communications program written with the Direct NET protocol.

The communications program used with a hosted network is more complex than the
simple RLL instructions used with the other configurations, but the concept is the
same. The host is the Direct NET master and must use a Direct NET protocol
communications program to initiate all network requests to read or write data. These
communication programs can be written in many different languages, such as
BASIC, C, etc. and must include the appropriate Direct NET commands.
Here’s an example of a Direct NET program. (This is just part of the program.)
Direct NET Program in BASIC
10 REM Program to read X0–X7 from a DL405 PLC

20 REM

30 REM Define all variables

40 REM

50 REM Change the slave address in HEX at line 60 if required.

60 SLAVEADDRESS=&H1

70 DATATYPE$=CHR$(&H32)

80 DATAADDR$=CHR$(&H30)+CHR$(&H31)+CHR$(&H30)+CHR$(&H31)

90 COMPLETEBLK$=CHR$(&H30)+CHR$(&H30)

100 PARTBLK$=CHR$(&H30)+CHR$(&H32)

110 MASTERADDR$=CHR$(&H30)+CHR$(&H30)

120 NORMAL$=CHR$(&H4E)

130 SLAVEADDR$=HEX$(SLAVEADDRESS)

140 IF LEN(SLAVEADDR$)<2 THEN SLAVEADDR$=”0”+SLAVEADDR$

150 OFFSETADDR$=CHR$(&H20+SLAVEADDRESS)

NOTE: This manual does not show you how to build communications programs that
manage the data storage and communications ports. You should check the
documentation that came with your programming software to determine the
appropriate techniques to solve these requirements.

The Master
Initiates Requests

Direct NET
Programs

D
irectN

E
T

 H
ost

C
om

m
unications P

rog.
6–3

Direct NET Host Communications Programs

The following diagram shows the general structure of the communications. The
program must:

� identify the slave station.
� indicate the type and amount of data to transfer.
� manage the communications between the master and slave.

Master Slave

Read Request

Write Request

Initiate
Request

Acknowledge

Define Request
Acknowledge and

Respond with
Data

Acknowledge
Receipt of Data

Finished – All
Data Sent

Finished

Initiate
Request

Acknowledge

Define Request

Acknowledge

Transmit Data

Acknowledge
Receipt of Data

Finished

The remainder of this chapter discusses the individual elements of Direct NET
protocol programs.

D
ire

ct
N

E
T

 H
os

t
C

om
m

un
ic

at
io

ns
 P

ro
g.

6–4
Direct NET Host Communications Programs

Modes of Operation

Direct NET can transfer a maximum of 65,791 bytes (256 blocks 256 bytes each +
an additional 255 bytes) in a single request. The actual amount of system
information that is transferred depends on the mode of operation.

There are two modes used with the Direct NET protocol, HEX or ASCII. You must
choose the mode of operation before you write the program. The major difference is
in the way the data is represented in the data packet. ASCII mode requires twice as
many bytes to transfer data. There are also minor differences in the command
structure which affect the way the enquiries and headers operate.

NOTE: This only applies to a Host master, since the DCM has the capability to detect
the data transfer mode and adjust for the additional number of bytes to be used when
transferring in ASCII mode.

If you’re transferring small amounts of data, or if the data is not being used to control
system timing, then it’s generally easier to use ASCII mode for Direct NET
programs. You should use HEX mode if you’re transferring large amounts of data
and you need the fastest possible communication time.
The following diagram shows the difference between HEX and ASCII modes.

Y0 – Y7

0

Transfer 8 Output Points

7
1 byte

HEX Mode

07
Byte 1

ASCII Mode

Byte 1
bits 0 – 3 in ASCII code

bits 4 – 7 in ASCII code
Byte 2

+

Transmission
Bytes

HEX or ASCII Mode

D
irectN

E
T

 H
ost

C
om

m
unications P

rog.
6–5

Direct NET Host Communications Programs

In HEX mode, the number of bytes transferred is equal to the number of bytes for the
selected data type. ASCII mode requires twice as many bytes to transfer the same
data. Here’s a listing of the data types and their corresponding byte requirements.

DL205/405
D t T

Description Bits per
it

Number of bytes
Data Type unit HEX ASCII

31 V memory

T / C current value

16

16

2

2

4

4

32 Inputs (X, GX, SP) 8 1 2

33 Outputs
(Y, C, Stage, T/C bits)

8 1 2

39 Diagnostic Status 8 1 2

DL305
D t T

Description Bits per
it

Number of bytes
Data Type unit HEX ASCII

31 Data registers

T / C accumulator

8

16

1

2

2

4

33 I/O, internal relays,
shift register bits, T/C
bits, stage bits

1 1 2

39 Diagnostic Status
(5 word R/W)

16 10 20

Data Type Byte
Requirements

D
ire

ct
N

E
T

 H
os

t
C

om
m

un
ic

at
io

ns
 P

ro
g.

6–6
Direct NET Host Communications Programs

Protocol Components

All Direct NET program read and write requests use the following protocol
components.

� Enquiry (ENQ) – initiates a request (from the master) with the slave
stations.

� Header (HDR) – defines the operation as a read or write, the slave
station address, and the type and amount of data to be transferred.

� Data (DATA) – the actual data that is being transferred.
� Acknowledge (ACK) – verifies communication is working correctly.
� End of Transmission (EOT) – indicates the communication is finished.

D
irectN

E
T

 H
ost

C
om

m
unications P

rog.
6–7

Direct NET Host Communications Programs

The following diagram shows how the protocol components are used with read and
write requests.

Master Slave

Read Request

Write Request

Initiate
Request

Acknowledge

Define Request
Acknowledge and

Respond with
Data

ENQ

ACK
HDR

ACK – DATA

Acknowledge
Receipt of DataACK

Finished – All
Data Sent EOT

FinishedEOT

Initiate
Request

Define Request

Acknowledge

ENQ

ACK

HDR

ACK

Transmit DataDATA

Acknowledge
Receipt of Data ACK

FinishedEOT

Acknowledge

D
ire

ct
N

E
T

 H
os

t
C

om
m

un
ic

at
io

ns
 P

ro
g.

6–8
Direct NET Host Communications Programs

Controlling the Communications

All read or write requests use ASCII control codes and a Longitudinal Redundancy
Check (LRC) to manage the communications between the master and slave. The
control codes identify the beginning and ending of the protocol components such as,
enquiry, acknowledge, etc. The LRC is used to ensure the data was transmitted and
received correctly.

Symbol
HEX

ASCII
Code

Description

ENQ 05 Enquiry – initiate request

ACK 06 Acknowledge – the communication was received without
error

NAK 15 Negative Acknowledge – there was a problem with the
communication

SOH 01 Start of Header – beginning of header

ETB 17 End of Transmission Block – end of intermediate block

STX 02 Start of Text – beginning of data block

ETX 03 End of Text – End of last data block

EOT 04 End of Transmission – the request is complete.

Control Codes

D
irectN

E
T

 H
ost

C
om

m
unications P

rog.
6–9

Direct NET Host Communications Programs

The following diagram shows how these control codes are combined with the protocol components to build
the Direct NET format for read and write requests. Note, the slave components are automatically generated
as a response to the requests from the master station. Your custom Direct NET program must generate the
protocol components for the master station.

Read Request Write Request

ENQ

ACK

HDR

ACK

ACK

EOT

N
Target Address

ACK

ACK

STX
Full Data Block

ETB
LRC

DATA

STX

Last Data Block
ETX
LRC

DATA

EOT

ACK

EOT

ACK

ACK

N

ENQ

ACK

HDR

ACK

DATA

EOT

Target Address

ENQ

N
Target Address

ACK
SOH

Header

ETB
LRC

ACK

STX
Full Data Block

ETB
LRC

STX

Last Data Block
ETX
LRC

DATA

EOT

ACK

ACK

Master Slave Master Slave

N

ENQ

SOH
Header

ETB
LRC

Target Address

ACK

EOT

ACK

D
ire

ct
N

E
T

 H
os

t
C

om
m

un
ic

at
io

ns
 P

ro
g.

6–10
Direct NET Host Communications Programs

Initiating the Request

The Enquiry is a three character message that initiates the request with the
appropriate slave station. The message always begins with 4E (“N”), which means
normal enquiry sequence. The second character contains the offset station address,
which is the station address plus HEX 20. The last character is the ASCII control
code for ENQ.

4E 22 05

Hexadecimal ASCII code for “N”

Offset slave address.
Example –
Address HEX 2 + HEX 20 = HEX 22

ASCII control code for ENQ

Byte 1 Byte 2 Byte 3

N

ENQ Target Address
ENQ

Note: Slave addresses for the DL430, DL440, DL340 and the DCU
have been set in decimal. It will be necessary for you to convert the ad-
dress from decimal to the Hexadecimal equivalent before adding the
HEX 20 offset.

HEX Format � � � � � � � � � 	
 � �
 � �

�� �� �� �� �� ��

16
�

60
48
12

60 Decimal 3C Hexadecimal

Enquiry
ENQ

D
irectN

E
T

 H
ost

C
om

m
unications P

rog.
6–11

Direct NET Host Communications Programs

Acknowledging the Request

The three character acknowledge commands are used by both the master and slave
stations to indicate the status of the communication. An ACK is used if the
information was transmitted (or received) without any problems. If there are
problems, Not Acknowledge (NAK) is used.
A NAK will also be returned from the slave if something is incorrect in the header or
data packet. This could be incorrect byte boundaries, an invalid address, etc. If the
master receives a NAK response, it can either try to re-transmit the data, or it can
terminate the request and try again.
The first two characters are the same as the Enquiry sequence. The third character
is the control code for an ACK or NAK.

4E 22 06 or 15

Hexadecimal ASCII code for “N”

Offset slave address.
Example –
Address HEX 2 + HEX 20 = HEX 22

ASCII control code for ACK (06)
or NAK (15)

Byte 1 Byte 2 Byte 3

N

ACK
ACK

Target Address

When text is being transmitted over the network, there may be character
combinations that are identical to an enquiry sequence. Network slave stations
would interpret the character sequence as an enquiry even though it was actually
data being sent to an identified slave.
A delay has been implemented to automatically eliminate this possibility. The delay
occurs between the receipt of an enquiry from the master and the acknowledgment
response from the slave. When the slave recognizes an enquiry sequence an
internal timer (with the time preset to the amount of time to transmit 2 characters) is
started. The slave ignores the enquiry if another character is received before the
timeout period has elapsed.

Acknowledge
ACK – NAK

Delayed Response
to an Enquiry

D
ire

ct
N

E
T

 H
os

t
C

om
m

un
ic

at
io

ns
 P

ro
g.

6–12
Direct NET Host Communications Programs

Defining the Request

The header is a 17-byte (18-byte for ASCII transmissions) message that defines the
operation. It is sent by the master station and specifies the following.

� type of operation (read or write)
� type of data being transferred
� data address
� number of complete data blocks
� number of bytes in the last data block

ETB
Header

HDR

SOH

LRC

Byte:

SOH Target
Slave

Read
or

Write

Data
Type

Starting
Address

MSB

Starting
Address

LSB

Number
Com-
plete

Blocks

Bytes
in Last
Block

Mas-
ter
ID

ETB LRC

1 2, 3 4 5 6, 7 8, 9 10, 11 12, 13 14, 15 16 17(18)

01 3034 30 31 3431 3031 3031 3930 3031 17

ASCII Coded Representation Example

08
3038

Hex
ASCII

The first byte in the header is the ASCII control code (01) that indicates this is the
beginning of a header.

The second and third bytes of the header indicate which slave station will be used.
This is the normal slave station address (in HEX ASCII code) that you assigned
during the network setup. This is not the offset slave station address, (with 20 HEX
added to the address), that is used with the enquiry sequence. For example, a slave
station with address 04 would be 3034 in ASCII code.
The table below shows how to decode the HEX/ASCII slave address. Remember if
the slave address is in HEX it will be necessary to translate the address to decimal
before decoding the HEX ASCII address. In the example below a slave station has a
network address of 04 decimal and the equivalent HEX ASCII code is 3034.

1 2 3 4 5 6 7 A B C D E F
30 31 32 33 34 35 36 37 41 42 43 44 45 46

ASCII Character
HEX Code

Decimal or ASCII Station Address
04

3034
Target Slave Address
in HEX ASCII Code

0

Header – HDR

Byte 1:
Start of Header

Bytes 2 & 3:
Target Slave
Address

D
irectN

E
T

 H
ost

C
om

m
unications P

rog.
6–13

Direct NET Host Communications Programs

Byte 4 indicates whether the operation is a read or write request. A value of HEX
ASCII 30 is read, HEX ASCII 38 is write.

This byte identifies the type of memory to be accessed. Appendices D–F provide a
complete listing of the data types and memory references for product families.

The address is the starting point for the data transfer. The data is transferred from
this point forward. For example, to transfer the first 32 X input points from a DL405
PLC the starting address would be V40400. The request would actually obtain
V40400 and V40401 since there are 16 points per V-memory location.
Bytes 6 and 7 define the most significant byte of the ASCII coded memory address.
For example, the reference address for V40400 is 4101. This is obtained by
converting the octal number to hexadecimal and adding 1, the most significant byte
of this value is then decoded into HEX ASCII. The most significant byte would be
HEX 41 or HEX ASCII 3431. Appendices D–F provide complete references for the
addresses used in the various Direct LOGIC PLC families.

These bytes define the least significant byte of the address obtained in the step
above. So to continue on with our example of reading the first 32 inputs at memory
location V40400 from a DL405 PLC, the reference value for this location would be
4101. The least significant byte of the reference value (01) would be decoded to
3031 in HEX ASCII.

This is the coded number of complete data blocks that should be transferred.
Direct NET can transfer 256 bytes in a single data block. Take the number of bytes
and divide by 256 to obtain the number of complete data blocks. This results in a
valid range of 00 – FF HEX, or 3030 – 4646 HEX ASCII. If you’re not transferring at
least 256 bytes, then this field should be HEX 00 or HEX ASCII 3030.
For example, if you are transferring 200 V-memory locations, you would have the
following: 200 x 2 bytes per location = 400 bytes. 400 bytes / 256 per block =1
complete block, with 144 bytes remaining. For one (01) complete data block, the
value entered for this field would be the HEX ASCII code of 3031.
This is the HEX ASCII coded number of bytes in the last data block. If you did not
have a an even number of complete data blocks, then you had some remaining
bytes. Enter the number of remaining bytes here. The valid range is 00 – FF HEX, or
3030 – 4646 HEX ASCII.
For example above with 144 bytes (or 90 bytes in HEX) the value entered in this field
would be the HEX ASCII code of 3930.
This is the master station address. Since the master station should be address 0 or
1, this field is always HEX ASCII 3030 or 3031 for addresses 0 and 1 respectively.

Byte 16 always contains the HEX ASCII code for End of Transmission Block. This
field always contains HEX ASCII17.

This is a checksum that is used to verify the communications were received without
any errors. This is calculated by taking the exclusive OR of the bytes between the
start of header (SOH) and the end of transmission (ETB) bytes (bytes 2 – 15). If
you’re using ASCII format, then this actually takes two bytes which makes the
header an 18 byte message. The LRC is explained in more detail later in this chapter.

Byte 4:
Read or Write

Byte 5:
Data Type

Bytes 6 & 7:
Starting Address
MSB

Bytes 8 & 9:
Starting Address
LSB

Bytes 10 & 11:
Complete Data
Blocks

Bytes 12 & 13:
Partial Data Block

Bytes 14 & 15:
Master Station ID

Byte 16:
End Transmission

Byte 17:
Longitudinal
Redundancy Check

D
ire

ct
N

E
T

 H
os

t
C

om
m

un
ic

at
io

ns
 P

ro
g.

6–14
Direct NET Host Communications Programs

Transferring Data

The data blocks contain the actual data that is being transferred between the master
and slave station. Direct NET transfers data in full blocks of 256 8-bit bytes, or partial
blocks of less than 256 8-bit bytes. The 256 byte limit does not include control
characters that signal the end of the data. To determine the number of full blocks,
divide the number of bytes by 256. The remainder is the number of bytes in the
partial data block.
Since ASCII mode requires twice as many bytes for the data, you can transfer more
information per request with HEX mode.

Since the data is transmitted in bytes, it is important to understand how the original
value is separated during transmission. Direct NET uses a simple byte swapping
process where the least significant byte is transferred first. In ASCII mode, the
original data is split into 4-bit units and then converted into 8-bit bytes.
Memory types that only use 1 byte are also treated in the same manner. For
example, a 1-byte memory type would yield 1 byte in HEX mode, but two bytes in
ASCII mode (4 bits converted into 2, 8-bit bytes).
The following diagram shows the differences between HEX and ASCII modes.

(200 x 4) / 256 = 3 full blocks �
(200x4) – (3 x 256) = 32 byte partial

V1400 (octal)Transfer 200 V-memory
Locations

HEX Mode ASCII Mode

V1650 (octal)

2, 8-bit bytes per location 4, 8-bit bytes per location

LSBMSB

V1400 (octal)

LSBMSB

LSB

MSB

V1400 (octal)

LSBMSB 1 2 3 4

3

4

1

2

(200 x 2) / 256 = 1 full block �
(200x2) – (1 x 256) = 144 byte partial

Data Blocks

Transmission
Sequence

D
irectN

E
T

 H
ost

C
om

m
unications P

rog.
6–15

Direct NET Host Communications Programs

The HEX ASCII control codes that indicate the beginning and end of data blocks are
used to manage the data transfer. Start of Text (STX) indicates the beginning of a
data block. If there are several blocks, all but the last block will terminate with the End
of Block (ETB) code. The last block always ends with End of Text (ETX). All transfers
also include an LRC checksum. (For a data block, the checksum is the exclusive OR
of all bytes between the STX and ETB/ETX characters. The LRC is discussed in
more detail later.)
The following diagram shows the communication sequence.

02 17 or 03

Hexadecimal ASCII
code for STX

HEX ASCII control code for ETB (17)
or ETX (03)

Byte 1 up to 256 Data Bytes Byte n

STX

DATA
ETB or ETX
Data Block

lsb msb lsb msb

LRC

Data

Checksum

Byte n+1

LRC

Start of Text, End
of Block, End of
Text

D
ire

ct
N

E
T

 H
os

t
C

om
m

un
ic

at
io

ns
 P

ro
g.

6–16
Direct NET Host Communications Programs

Calculating the Header Checksum

The LRC yields a checksum which is used to verify the communications are being
received without errors. For a header, this checksum is calculated by taking the
exclusive OR of all bytes between the Start of Header and End of Transmission
(ETB). For a data block, the checksum is the exclusive OR of all bytes between the
STX and ETB/ETX characters. To take the exclusive OR, just convert the HEX
values to binary and then examine the bits. For each bit position, an even number of
‘1’s results in a checksum value of 0. An odd number of ‘1’s results in a checksum
value of 1. Here’s an LRC calculation example based on the values used in the
discussion of the header.

Byte:

SOH Target
Slave

Read
or Write

Data
Type

Data
Address

MSB

Data
Address

LSB

Number
Complete

Blocks

Bytes
in Last
Block

Master
ID

ETB LRC

1 2, 3 4 5 6, 7 8, 9 10, 11 12, 13 14, 15 16 17(18)

01 3034 30 31 3431 3031 3031 3930 3031 17

HEX ASCII Coded Representation

08
3038

HEX

ASCII

Byte HEX
ASCII

Binary Representation
ASCII
Value B7

128

B6
64

B5
32

B4
16

B3
8

B2
4

B1
2

B0
1

Target slave: (byte 2) 30 0 0 1 1 0 0 0 0

(byte 3) 34 0 0 1 1 0 1 0 0

Read or write: (byte 4) 30 0 0 1 1 0 0 0 0

Data Type: (byte 5) 31 0 0 1 1 0 0 0 1

Data address MSB: (byte 6) 34 0 0 1 1 0 1 0 0

(byte 7) 31 0 0 1 1 0 0 0 1

Data address LSB: (byte 8) 30 0 0 1 1 0 0 0 0

(byte 9) 31 0 0 1 1 0 0 0 1

Complete blocks: (byte 10) 30 0 0 1 1 0 0 0 0

(byte 11) 31 0 0 1 1 0 0 0 1

Bytes in last block: (byte 12) 39 0 0 1 1 1 0 0 1

(byte 13) 30 0 0 1 1 0 0 0 0

Master address:(byte 14) 30 0 0 1 1 0 0 0 0

(byte 15) 31 0 0 1 1 0 0 0 1

Total Number of “1s” 0 0 14 14 1 2 0 6

Even (E) or Odd (O) E E E E O E E E

Exclusive OR Results: 0 0 0 0 1 0 0 0

Hexadecimal Value 0 8

HEX ASCII Code 30 38

Longitudinal
Redundancy
Check

D
irectN

E
T

 H
ost

C
om

m
unications P

rog.
6–17

Direct NET Host Communications Programs

From the table the checksum value is decimal 8. The checksum is contained in byte
17 of the header, but the actual value that is included depends on which mode of
operation you are using. In HEX mode, this would be HEX 08. If you’re using ASCII
mode, then the value would be 3038 and the LRC now requires two bytes (17 and
18). The following diagram shows the differences in a HEX or ASCII mode LRC.

Decimal 8

0

LRC Checksum

7
1 byte

HEX Mode: 1 byte

ASCII Mode: 2 bytes

00010000
ETB LRC

16 17

17 08

ETB LRC

16 17 & 18

17 3038

Calculating the Data LRC

You should always calculate the LRC when either writing data to a slave or reading
data from a slave. Note, during a read command slave stations will calculate their
own LRC to be verified by the receiving device. However, you must calculate the
value for LRC verification.
The LRC is included in the header and data transmissions. For a data block, the
checksum is the exclusive OR of all bytes between the STX and ETB/ETX
characters. (The example program in Appendix C shows how to do this in a BASIC
program.)

NOTE: You only have to verify the checksum when you are creating your own
Direct NET communications programs. If the master is a Direct LOGIC PLC with a
communications interface, RLL instructions are used for the communication
program and checksum verification is done automatically.

LCRSTX 32 31 33 32 30 33 35 31 ETB/ETXLCRETB/ETXSTX 21 32 03 51

21= 0010 0001

32= 0011 0010

03= 0000 0011

51 = 0101 0001

32 = 0011 0010
31 = 0011 0001

33 = 0011 0011
32 = 0011 0010
30 = 0011 0000
33 = 0011 0011
35 = 0011 0101
31 = 0011 0001

0100 0001 = 41 LCR

HEX Mode ASCII Mode

0000 0101 = 3035 LCR

This example shows
how to calculate the
LRC for the same data
being transferred in
either HEX or ASCII
mode.

(0000 0101 = 05 = 3035 HEX ASCII)

LRC Example for
HEX and ASCII
Transfers

D
ire

ct
N

E
T

 H
os

t
C

om
m

un
ic

at
io

ns
 P

ro
g.

6–18
Direct NET Host Communications Programs

Ending the Request

When the last data block has been transferred and acknowledged, the End of
Transmission (EOT) character is sent. The master station must always end the
communication by sending an EOT (HEX ASCII 04). The following diagram shows
the EOT format.

04

HEX ASCII
code for EOT

Byte 1

EOTEOT

ACK

ACK

N

ENQ

ACK

HDR

ACK

DATA

EOT

Offset Target Address

ENQ

N

ACK

SOH

Target Address

ETB

LRC

ACK

STX

Full Data Block
(256 bytes)

ETB

LRC

STX

Last Data Block

ETX

LRC

DATA

EOT

ACK

ACK

4E 21 05

Host Master Station Slave Station

Offset Target Address

4E 21 05

Write

Function

Starting Address

Whole Blocks

Remaining Bytes

Host Number

01 3031 38 37 3030 3134 3031 3045 3030 17 LRC

02 Date 03 LRC

02 Date 17 LRC

04

06

06

06

End of
Transmission –
ETB

Master to Slave
Data Transfer
Summary Sheet

D
irectN

E
T

 H
ost

C
om

m
unications P

rog.
6–19

Direct NET Host Communications Programs

Timing Considerations

The network communications generally operate very quickly and without problems.
However, as with all things, problems can occur. Timeouts occur when either the
master or slave does not receive a response to a communication within a certain
period of time. There are two timeout possibilities.

� Slave timeout – this occurs when the slave does not respond within a
specified time. When the slave times out, you must send an EOT from
the host to terminate the communication

� Master timeout – this occurs when the slave station does not receive the
complete communication from the master within a specified time. The
slave station will send an EOT to signal that the communications have
been terminated. The master must also send an EOT back to the slave
to acknowledge the termination. (This allows the next communication to
begin.)

The following tables provide the maximum times that Direct LOGIC products will
wait for a communication before entering a timeout condition.

Communication Segment within (ms)

Master sends ENQ → Slave sends ACK 800

Master receives ACK → sends Header 800

Slave receives Header → sends ACK/NAK 2000

(Destination – write is slave, read is master)()

Master receives ACK → Data is transferred 20000

Destination receives Data → sends ACK/NAK 20000

Source receives ACK/NAK → sends EOT 800

Communication Segment within (ms)

Master sends ENQ → Slave sends ACK 800

Master receives ACK → sends Header 800

Slave receives Header → sends ACK/NAK 2000

(Destination – write is slave, read is PLC)()

Master receives ACK → Data is transferred 20000

Destination receives Data → sends ACK/NAK 20000

Source receives ACK/NAK → sends EOT 800

Timeouts

DL405 Timeouts

DL205 Timeouts

D
ire

ct
N

E
T

 H
os

t
C

om
m

un
ic

at
io

ns
 P

ro
g.

6–20
Direct NET Host Communications Programs

Communication Segment within (ms)

Master sends ENQ → Slave sends ACK 800

Master receives ACK → sends Header 800

Slave receives SOH → waits for Header LRC

300 baud

1200 baud

9600 baud

19.2K baud

2670

670

670

670

Slave receives Header → sends ACK/NAK 2000

(Destination – write is slave, read is PLC)

Master receives ACK → Data is transferred 20000

Destination receives Data → sends ACK/NAK

300 baud 33340

1200 baud

9600 baud

8340

8340

19.2K baud

Source receives ACK/NAK → sends EOT

8340

800

All communications finish with an EOT being sent from the master station. Even if
the slave station sends an EOT to signal that it has aborted the communication, the
master still must send an EOT to enable the slave to accept a new enquiry.
If you are reading information from a slave and the LRC calculated in your program
does not match the slave station LRC, you do not have to abort the communication
with an EOT. Instead, send a NAK which will signal the slave to re-transmit the data.
If you send an EOT you must restart the entire request.
The slave stations send NAKs to signal the master to try sending header or data
packets again. The master can either re-transmit a maximum of three times, or, send
an EOT to restart the request.
Each portion of the communication requires a delay to allow the PLC to process the
information. If you send data without allowing for the delay, the communication may
be ignored (which causes a timeout), or the parity check will fail (which causes a NAK
response). The following table provides delay times for the Direct LOGIC
products.

Information to Process Delay (ms)

ACK of data packets,
headers

1

All other ACKs, headers,
EOTs

1

NOTE: The communication interfaces have delay switches that increase this delay
time. If those delays are selected, add the appropriate times to the figures shown
here.

DL305 Timeouts

Managing
Timeouts

Communication
Retries

Delays

D
irectN

E
T

 H
ost

C
om

m
unications P

rog.
6–21

Direct NET Host Communications Programs

What part of the manual should you use next?

Once you’ve created the communications program, you can start the network.
Chapter 7 provides information concerning network operation and troubleshooting.
Appendix C provides an example of a hosted network.

Start the Network

