

volume one. Table of Contents	
Volume Two: Table of Contents	x
Chapter 1: Getting Started	1–1
Introduction The Purpose of this Manual Where to Begin Supplemental Manuals Technical Support	1-2 1-2 1-2 1-2
Conventions Used Key Topics for Each Chapter	1–3 1–3
DL205 System Components CPUs Bases I/O Configuration I/O Modules DL205 System Diagrams	1-4 1-4 1-4 1-4 1-5
Programming Methods DirectSOFT Programming for Windows. Handheld Programmer	1-7 1-7 1-7
DirectLOGIC™ Part Numbering System	1–8
Quick Start for PLC Validation and Programming	1–10
Steps to Designing a Successful System	1–13

Chapter 2: Installation, Wiring and Specifications	2–1
Safety Guidelines	2–2
Plan for Safety	2–2
Three Levels of Protection	2–3
Emergency Stops	2–3
Emergency Power Disconnect	2–4
Orderly System Shutdown	2–4
Class 1, Division 2, Approval	2–4
Mounting Guidelines	2–5
Base Dimensions	2–5
Panel Mounting and Layout	2–6
Enclosures	2–7
Environmental Specifications	2–8
Power	2–8
Marine Use	2–9
Agency Approvals 24 VDC Power Bases	2–9
	2–9
Installing DL205 Bases	2–10
Choosing the Base Type	2–10
Mounting the Base	2–10
Using Mounting Rails	2–11
Installing Components in the Base	2–12
Base Wiring Guidelines	2–13
Base Wiring	2–13
I/O Wiring Strategies	2–14
PLC Isolation Boundaries	2–14
Powering I/O Circuits with the Auxiliary Supply	2–15
Powering I/O Circuits Using Separate Supplies	2–16
Sinking / Sourcing Concepts	2–17
I/O "Common" Terminal Concepts	2–18
Connecting DC I/O to "Solid State" Field Devices	2–19
Solid State Input Sensors	2–19
Solid State Output Loads	2–19
Relay Output Guidelines	2–21
Relay Outputs – Transient Suppression for Inductive Loads in a Control System	2–21
I/O Modules Position, Wiring, and Specification	2–26

Slot Numbering	2–26
Module Placement Restrictions	2–26
Special Placement Considerations for Analog Modules	2–27
Discrete Input Module Status Indicators	2–27
Color Coding of I/O Modules	2–27
Wiring the Different Module Connectors	2–28
I/O Wiring Checklist	2–29
D2-08ND3, DC Input	2–30
D2-16ND3-2, DC Input	2–30
D2–32ND3, DC Input	2–31
D2-32ND3-2, DC Input	2–32
D2-08NA-1, AC Input	2–33
D2-08NA-2, AC Input	2–34
D2-16NA, AC Input	2–35
F2-08SIM, Input Simulator	2–35
D2-04TD1, DC Output	2–36
D2-08TD1, DC Output	2–37
D2-08TD2, DC Output	2–37
D2-16TD1-2, DC Output	2–38
D2-16TD2-2, DC Output	2–38
F2–16TD1(2)P, DC Output With Fault Protection	2–39
F2–16TD1P, DC Output With Fault Protection	2–40
F2–16TD2P, DC Output with Fault Protection	2–41
D2-32TD1, DC Output	2–42
D2–32TD2, DC Output	2–42
F2–08TA, AC Output	2–43
D2-08TA, AC Output	2–43
D2–12TA, AC Output	2–44
D2-04TRS, Relay Output	2–45
D2-08TR, Relay Output	2–46
F2-08TR, Relay Output	2–47

F2-08TRS, Relay Output	2–48
D2–12TR, Relay Output	2–49
D2-08CDR 4 pt., DC Input / 4pt., Relay Output	2–50
Glossary of Specification Terms	2–51
Chapter 3: CPU Specifications and Operations	3–1
CPU Overview	3–2
General CPU Features	3–2
DL230 CPU Features	3–2
DL240 CPU Features	3–2
DL250–1 CPU Features	3–3
DL260 CPU Features	3–3
CPU General Specifications	3–4
CPU Base Electrical Specifications	3–5
CPU Hardware Setup	3–6
Communication Port Pinout Diagrams	3–6
Port 1 Specifications	3–7
Port 2 Specifications	3–8
Selecting the Program Storage Media	3–9
Built-in EEPROM	3–9
EEPROM Sizes	3–9
EEPROM Operations	3–9
Installing the CPU	3–10
Connecting the Programming Devices	3–10
CPU Setup Information	3–11
Status Indicators	3–12
Mode Switch Functions Changing Modes in the DL 205 BLC	3–12 3–13
Changing Modes in the DL205 PLC Mode of Operation at Power-up	3–13 3–13
·	
Using Battery Backup DL230 and DL240	3–14
DL250 and DL240 DL250-1 and DL260	3–14 3–14
Battery Backup	3–14 3–14
Auxiliary Functions	3–14
Clearing an Existing Program	3–16

Initializing System Memory	3–16
Setting the Clock and Calendar	3–16
Setting the CPU Network Address	3–17
Setting Retentive Memory Ranges	3–17
Using a Password	3–18
Setting the Analog Potentiometer Ranges	3–19
CPU Operation	3–21
CPU Operating System	3–21
Program Mode Operation	3–22
Run Mode Operation	3–22
Read Inputs	3–23
Read Inputs from Specialty and Remote I/O	3–23
Service Peripherals and Force I/O	3–23
CPU Bus Communication	3–24
Update Clock, Special Relays and Special Registers	3–24
Solve Application Program	3–25
Solve PID Loop Equations	3–25
Write Outputs	3–25
Write Outputs to Specialty and Remote I/O	3–26
Diagnostics	3–26
I/O Response Time	3–27
Is Timing Important for Your Application?	3–27
Normal Minimum I/O Response	3–27
Normal Maximum I/O Response	3–27
Improving Response Time	3–28
CPU Scan Time Considerations	3–29
Initialization Process	3–30
Reading Inputs	3–30
Reading Inputs from Specialty I/O	3–31
Service Peripherals	3–31
CPU Bus Communication	3–32
Update Clock/Calendar, Special Relays, Special Registers	3–32
Writing Outputs	3–32
Writing Outputs to Specialty I/O	3–33
Diagnostics	3–33
Application Program Execution	3–34

PLC Numbering Systems	3–35
PLC Resources	3–35
V–Memory	3–36
Binary-Coded Decimal Numbers	3–36
Hexadecimal Numbers	3–36
Memory Map	3–37
Octal Numbering System	3–37
Discrete and Word Locations	3–37
V-Memory Locations for Discrete Memory Areas	3–37
Input Points (X Data Type)	3–38
Output Points (Y Data Type)	3–38
Control Relays (C Data Type)	3–38
Timers and Timer Status Bits (T Data type)	3–38
Timer Current Values (V Data Type)	3–39
Counters and Counter Status Bits (CT Data type)	3–39
Counter Current Values (V Data Type)	3–39
Word Memory (V Data Type)	3–39
Stages (S Data type)	3–40
Special Relays (SP Data Type)	3–40
Remote I/O Points (GX Data Type)	3–40
DL230 System V-memory	3–41
DL240 System V-memory	3–43
DL250–1 System V-memory (DL250 also)	3–46
DL260 System V-memory	3–49
DL205 Aliases	3–52
DL230 Memory Map	3–53
DL240 Memory Map	3–54
DL250-1 Memory Map (DL250 also)	3–55
DL260 Memory Map	3–56
X Input/Y Output Bit Map	3–57
Control Relay Bit Map	3–59
Stage Control/Status Bit Map	3–63
Timer and Counter Status Bit Maps	3–65
Remote I/O Bit Map	3–66

Chapter 4: System Design and Configuration	4–1
DL205 System Design Strategies	4–2
I/O System Configurations	4–2
Networking Configurations	4–2
Module Placement	4–3
Slot Numbering	4–3
Module Placement Restrictions	4–3
Automatic I/O Configuration	4–4
Manual I/O Configuration	4–4
Removing a Manual Configuration	4–5
Power–On I/O Configuration Check	4–5
I/O Points Required for Each Module	4–6
Calculating the Power Budget	4–7
Managing your Power Resource	4–7
CPU Power Specifications	4–7
Module Power Requirements	4–7
Power Budget Calculation Example	4–9
Power Budget Calculation Worksheet	4–10
Local Expansion I/O	4–11
D2–CM Local Expansion Module	4–11
D2–EM Local Expansion Module	4–12
D2-EXCBL-1 Local Expansion Cable	4–12
DL260 Local Expansion System	4–13
DL250–1 Local Expansion System	4–14
Expansion Base Output Hold Option	4–15
Enabling I/O Configuration Check using <i>Direct</i> SOFT	4–16
Expanding DL205 I/O	4–17
I/O Expansion Overview	4–17
Ethernet Remote Master, H2-ERM(100)(-F)	4–17
Ethernet Remote Master Hardware Configuration	4–18
Installing the ERM Module	4–19
Ethernet Base Controller, H2-EBC(100)(-F)	4–22
Install the EBC Module	4–23
Set the Module ID	4–23
Insert the EBC Module	4–23
Network Cabling	4–24

10BaseFL Network Cabling	4–25
Maximum Cable Length	4–25
Add a Serial Remote I/O Master/Slave Module	4–26
Configuring the CPU's Remote I/O Channel	4–27
Configure Remote I/O Slaves	4–29
Configuring the Remote I/O Table	4–29
Remote I/O Setup Program	4–30
Remote I/O Test Program	4–31
Network Connections to Modbus and DirectNet	4–32
Configuring Port 2 For <i>Direct</i> Net	4–32
Configuring Port 2 For Modbus RTU	4–32
Modbus Port Configuration	4–33
DirectNET Port Configuration	4–34
Network Slave Operation	4–35
Modbus Function Codes Supported	4–35
Determining the Modbus Address	4–35
If Your Host Software Requires the Data Type and Address	4–35
If Your Modbus Host Software Requires an Address ONLY	4–38
Example 1: V2100 584/984 Mode	4–40
Example 2: Y20 584/984 Mode	4–40
Example 3: T10 Current Value 484 Mode	4–40
Example 4: C54 584/984 Mode	4-40
Determining the <i>Direct</i> NET Address	4-40
Network Master Operation	4-41
Communications from a Ladder Program	4-44
Multiple Read and Write Interlocks	4–44
Network Modbus RTU Master Operation (DL260 only)	4–45
Modbus Function Codes Supported	4–45
Modbus Port Configuration	4–46
RS-485 Network (Modbus only)	4–47
RS-232 Network	4–47
Modbus Read from Network (MRX)	4–48
MRX Slave Memory Address	4–49
MRX Master Memory Addresses	4-49
MRX Number of Elements	4-49
MRX Exception Response Buffer	4-49
Modbus Write to Network (MWX)	4–50

MWX Slave Memory Address	4–51
MWX Master Memory Addresses	4–51
MWX Number of Elements	4–51
MWX Exception Response Buffer	4–51
MRX/MWX Example in <i>Direct</i> SOFT	4–52
Multiple Read and Write Interlocks	4–52
Non-Sequence Protocol (ASCII In/Out and PRINT)	4–54
Configure the DL260 Port 2 for Non-Sequence	4–54
RS-485 Network	4–55
RS–232 Network	4–55
Configure the DL250-1 Port 2 for Non-Sequence	4–56
RS-422 Network	4–57
RS–232 Network	4–57
Chapter 5: RLL and Intelligent Box (IBOX) Instructions	5–1
Introduction	5–2
Using Boolean Instructions	5–5
END Statement	5–5
Simple Rungs	5–5
Normally Closed Contact	5–6
Contacts in Series	5–6
Midline Outputs	5–6
Parallel Elements	5–7
Joining Series Branches in Parallel	5–7
Joining Parallel Branches in Series	5–7
Combination Networks	5–7
Comparative Boolean	5–8
Boolean Stack	5–8
Immediate Boolean	5–9
Boolean Instructions	5–10
Comparative Boolean	5–27
Immediate Instructions	5–33
Timer, Counter and Shift Register Instructions	5–41
Using Timers	5–41
Timer Example Using Discrete Status Bits	5–43

Timer Example Using Comparative Contacts	5–43
Accumulating Timer (TMRA)	5–44
Accumulating Timer Example using Discrete Status Bits	5–45
Accumulator Timer Example Using Comparative Contacts	5–45
Counter Example Using Discrete Status Bits	5–47
Counter Example Using Comparative Contacts	5–47
Stage Counter Example Using Discrete Status Bits	5–49
Stage Counter Example Using Comparative Contacts	5–49
Up/Down Counter Example Using Discrete Status Bits	5–51
Up/Down Counter Example Using Comparative Contacts	5–51
Accumulator/Stack Load and Output Data Instructions	5–53
Logical Instructions (Accumulator)	5–71
Math Instructions	5–88
Transcendental Functions (DL260 only)	5–121
Bit Operation Instructions	5–123
Number Conversion Instructions (Accumulator)	5–130
Table Instructions	5–144
Clock/Calendar Instructions	5–175
CPU Control Instructions	5–177
Program Control Instructions	5–179
Interrupt Instructions	5–187
Intelligent I/O Instructions	5–191
Network Instructions	5–193
Message Instructions	5–197
Modbus RTU Instructions (DL260)	5–205
Modbus Read from Network (MRX)	5-205
Modbus Write to Network (MWX)	5–208
ASCII Instructions (DL260)	5–211
Intelligent Box (IBox) Instructions (DI 250-1/DI 260)	5-230

VOLUME TWO: TABLE OF CONTENTS

napter 6: Drum Instruction Programming (DL250-1/DL260 only)	6– I
Introduction Purpose Drum Terminology Drum Chart Representation Output Sequences	6-2 6-2 6-3 6-3
Step Transitions Drum Instruction Types Timer-Only Transitions Timer and Event Transitions Event-Only Transitions Counter Assignments Last Step Completion	6-4 6-4 6-5 6-6 6-6 6-7
Overview of Drum Operation Drum Instruction Block Diagram Powerup State of Drum Registers	6–8 6–8 6–9
Drum Control Techniques Drum Control Inputs Self-Resetting Drum Initializing Drum Outputs Using Complex Event Step Transitions	6-10 6-10 6-11 6-11 6-11
Drum Instruction Timed Drum with Discrete Outputs (DRUM) Event Drum (EDRUM) Handheld Programmer Drum Mnemonics Masked Event Drum with Discrete Outputs (MDRMD) Masked Event Drum with Word Output (MDRMW)	6-12 6-12 6-14 6-16 6-19 6-21

Chapter 7: RLL ^{PLUS} Stage Programming	7–1
Introduction to Stage Programming	7–2
Overcoming "Stage Fright"	7–2
Learning to Draw State Transition Diagrams	7–3
Introduction to Process States	7–3
The Need for State Diagrams	7–3
A 2–State Process	7–3
RLL Equivalent	7–4
Stage Equivalent	7–4
Let's Compare	7–5
Initial Stages	7–5
What Stage Bits Do	7–6
Stage Instruction Characteristics	7–6
Using the Stage Jump Instruction for State Transitions	7–7
Stage Jump, Set, and Reset Instructions	7–7
Stage Program Example: Toggle On/Off Lamp Controller	7–8
A 4–State Process	7–8
Four Steps to Writing a Stage Program	7–9
Stage Program Example: A Garage Door Opener	7–10
Garage Door Opener Example	7–10
Draw the Block Diagram	7–10
Draw the State Diagram	7–11
Add Safety Light Feature	7–12
Modify the Block Diagram and State Diagram	7–12
Using a Timer Inside a Stage	7–13
Add Emergency Stop Feature	7–14
Exclusive Transitions	7–14
Stage Program Design Considerations	7–15
Stage Program Organization	7–15
How Instructions Work Inside Stages	7–16
Using a Stage as a Supervisory Process	7–17
Stage Counter	7–17
Unconditional Outputs	7–18
Power Flow Transition Technique	7–18
Parallel Processing Concepts	7–19

xii

Parallel Processes	7–19
Converging Processes	7–19
Convergence Stages (CV)	7–19
Convergence Jump (CVJMP)	7–20
Convergence Stage Guidelines	7–20
Managing Large Programs	7–21
Stage Blocks (BLK, BEND)	7–21
Block Call (BCALL)	7–22
RLL ^{PLUS} (Stage) Instructions	7–23
Stage (SG)	7–23
Initial Stage (ISG)	7–24
Jump (JMP)	7–24
Not Jump (NJMP)	7–24
Converge Stage (CV) and Converge Jump (CVJMP)	7–25
Block Call (BCALL)	7–27
Block (BLK)	7–27
Block End (BEND)	7–27
Stage View in <i>Direct</i> SOFT	7–28
Questions and Answers about Stage Programming	7–29
Chapter 8: PID Loop Operation	8–1
DL250-1 and DL260 PID Loop Features	8–2
Main Features	8–2
Introduction to PID Control	8–4
	6–4 8–4
Why use PID Control?	
Introducing DL205 PID Control	8–6
Process Control Definitions	8–8
PID Loop Operation	8–9
Position Form of the PID Equation	8–9
Reset Windup Protection	8–10
Freeze Bias	8–11
Adjusting the Bias	8–11
Step Bias Proportional to Step Change in SP	8–12
Eliminating Proportional, Integral or Derivative Action	8–12
Velocity Form of the PID Equation	8–12

Bumpless Transfer	8–13
Loop Alarms	8–13
Loop Operating Modes	8–14
Special Loop Calculations	8–14
Ten Steps to Successful Process Control	8–16
PID Loop Setup	8–18
Some Things to Do and Know Before Starting	8–18
PID Error Flags	8–18
Establishing the Loop Table Size and Location	8–18
Loop Table Word Definitions	8–20
PID Mode Setting 1 Bit Descriptions (Addr + 00)	8–21
PID Mode Setting 2 Bit Descriptions (Addr + 01)	8–22
Mode/Alarm Monitoring Word (Addr + 06)	8–23
Ramp/Soak Table Flags (Addr + 33)	8–23
Ramp/Soak Table Location (Addr + 34)	8–24
Ramp/Soak Table Programming Error Flags (Addr + 35)	8–24
PV Auto Transfer (Addr + 36) from I/O Module Base/Slot/Channel Option	8–25
PV Auto Transfer (Addr + 36) from V-memory Option	8–25
Control Output Auto Transfer (Addr + 37)	8–25
Configure the PID Loop	8–26
PID Loop Tuning	8–41
Open-Loop Test	8–41
Manual Tuning Procedure	8–42
Alternative Manual Tuning Procedures by Others	8–45
Tuning PID Controllers	8–45
Auto Tuning Procedure	8–46
Use <i>Direct</i> SOFT Data View with PID View	8–50
Open a New Data View Window	8–50
Open PID View	8–51
Using the Special PID Features	8–54
How to Change Loop Modes	8–54
Operator Panel Control of PID Modes	8–55
PLC Modes Effect on Loop Modes	8–55
Loop Mode Override	8–55
PV Analog Filter	8–56
Creating an Analog Filter in Ladder Logic	8-57

Use the <i>Direct</i> SOFT 5 Filter Intelligent Box (IBOX) Instruction FilterB Example	8–58 8–58
Ramp/Soak Generator	8–59
Introduction	8–59
Ramp/Soak Table	8–60
Ramp/Soak Table Flags	8–62
Ramp/Soak Generator Enable	8–62
Ramp/Soak Controls	8–62
Ramp/Soak Profile Monitoring	8–63
Ramp/Soak Programming Errors	8–63
Testing Your Ramp/Soak Profile	8–63
DirectSOFT Ramp/Soak Example	8–64
Setup the Profile in PID Setup	8–64
Program the Ramp/Soak Control in Relay Ladder	8–64
Test the Profile	8–65
Cascade Control	8–66
Introduction	8–66
Cascaded Loops in the DL205 CPU	8–67
Tuning Cascaded Loops	8–68
Time-Proportioning Control	8–69
On/Off Control Program Example	8–70
Feedforward Control	8–71
Feedforward Example	8–72
PID Example Program	8–73
Program Setup for the PID Loop	8–73
Troubleshooting Tips	8–76
Glossary of PID Loop Terminology	8–78
Bibliography	8–80
Chapter 9: Maintenance and Troubleshooting	9–1
Hardware Maintenance	9–2
Standard Maintenance	9–2
Air Quality Maintenance	9–2
Low Battery Indicator	9–2
CPU Battery Replacement	9_2

Diagnostics	9–3
Diagnostics	9–3
Fatal Errors	9–3
Non-fatal Errors	9–3
Finding Diagnostic Information	9–4
V-memory Locations Corresponding to Error Codes	9–4
Special Relays (SP) Corresponding to Error Codes	9–5
I/O Module Codes	9–6
Error Message Tables	9–7
System Error Codes	9–8
Program Error Codes	9–9
CPU Error Indicators	9–10
PWR Indicator	9–11
Incorrect Base Power	9–11
Faulty CPU	9–11
Device or Module causing the Power Supply to Shutdown	9–12
Power Budget Exceeded	9–12
Run Indicator	9–13
CPU Indicator	9–13
BATT Indicator	9–13
Communications Problems	9–13
I/O Module Troubleshooting	9–14
Things to Check	9–14
I/O Diagnostics	9–14
Some Quick Steps	9–15
Testing Output Points	9–16
Handheld Programmer Keystrokes Used to Test an Output Point	9–16
Noise Troubleshooting	9–17
Electrical Noise Problems	9–17
Reducing Electrical Noise	9–17
Machine Startup and Program Troubleshooting	9–18
Syntax Check	9–18
Duplicate Reference Check	9–19
TEST-PGM and TEST-RUN Modes	9–20
Special Instructions	9–22
Run Time Edits	9–24

Forcing I/O Points	9–26
Regular Forcing with Direct Access	9–28
Bit Override Forcing	9–29
Bit Override Indicators	9–29
Appendix A: Auxiliary Functions	A-1
Introduction	A-2
What are Auxiliary Functions?	A-2
Accessing AUX Functions via <i>Direct</i> SOFT	A-3
Accessing AUX Functions via the Handheld Programmer	A-3
AUX 2* — RLL Operations	A-4
AUX 21-24	A-4
AUX 21 Check Program	A-4
AUX 22 Change Reference	A-4
AUX 23 Clear Ladder Range	A-4
AUX 24 Clear Ladders	A-4
AUX 3* — V-memory Operations	A-5
AUX 31	A-5
AUX 31 Clear V-Memory	A-5
AUX 4* — I/O Configuration	A-5
AUX 41-46	A-5
AUX 41 Show I/O Configuration	A-5
AUX 42 I/O Diagnostics	A-5
AUX 44 Power-up Configuration Check	A-5
AUX 45 Select Configuration	A-6
AUX 46 to I/O Configuration	A-6
AUX 5* — CPU Configuration	A-7
AUX 51-5C	A-7
AUX 51 Modify Program Name	A-7
AUX 52 Display/Change Calendar	A-7
AUX 53 Display Scan Time	A-8
AUX 54 Initialize Scratchpad	A-8
AUX 55 Set Watchdog Timer	A-8
AUX 56 CPU Network Address	A-8
AUX 57 Set Retentive Ranges	A-9
AUX 58 Test Operations	A-9

AUX 59 Bit Override	A-10
AUX 5B Counter Interface Configuration	A-10
AUX 5C Display Error History	A-11
AUX 6* — Handheld Programmer Configuration	A-12
AUX 61, 62 and 65	A-12
AUX 61 Show Revision Numbers	A-12
AUX 62 Beeper On/Off	A-12
AUX 65 Run Self Diagnostics	A-12
AUX 7* - EEPROM Operations	A-12
AUX 71 - 76	A-12
Transferable Memory Areas	A-13
AUX 71 CPU to HPP EEPROM	A-13
AUX 72 HPP EEPROM to CPU	A-13
AUX 73 Compare HPP EEPROM to CPU	A-13
AUX 74 HPP EEPROM Blank Check	A-13
AUX 75 Erase HPP EEPROM	A-13
AUX 76 Show EEPROM Type	A-13
AUX 8* — Password Operations	A-14
AUX 81 - 83	A-14
AUX 81 Modify Password	A-14
AUX 82 Unlock CPU	A-14
AUX 83 Lock CPU	A–14
Appendix B: DL205 Error Codes	B-1
Appendix C: Instruction Execution Times	C-1
Introduction	C-2
V-Memory Data Registers	C-2
V-Memory Bit Registers	C-2
How to Read the Tables	C-2
Boolean Instructions	C-3
Comparative Boolean Instructions	C-4
Bit of Word Boolean Instructions	C-13
Immediate Instructions	C-14
Timer, Counter and Shift Register Instructions	C-15

Accumulator Data Instructions	C-16
Logical Instructions	C-18
Math Instructions	C-20
Differential Instructions	C-23
Bit Instructions	C-24
Number Conversion Instructions	C-25
Table Instructions	C-25
CPU Control Instructions	C-27
Program Control Instructions	C-27
Interrupt Instructions	C-28
Network Instructions	C-28
Intelligent I/O Instructions	C-28
Message Instructions	C-29
RLL ^{PLUS} Instructions	C-29
DRUM Instructions	C-29
Clock / Calender Instructions	C-30
Modbus Instructions	C-30
ASCII Instructions	C-30
Appendix D: Special Relays	D-1
DL230 CPU Special Relays	D-2
Startup and Real-Time Relays	D-2
CPU Status Relays	D-2
System Monitoring Accumulator Status	D-2 D-3
Counter Interface Module Relays	D-3
Equal Relays for Multi-step Presets with Up/Down Counter #1 / DL230	D-3
(for use with a Counter Interface Module)	D-4
DL240/DL250-1/DL260 CPU Special Relays	D-5
Startup and Real-Time Relays	D-5
CPU Status Relays	D-5
System Monitoring Relays	D-6
Accumulator Status Relays	D-6

Counter Interface Module Relays	D-7
Communications Monitoring Relays	D-8
Equal Relays for Multi-step Presets with Up/Down Counter #1	
(for use with a Counter Interface Module)	D-9
Equal Relays for Multi-step Presets with Up/Down Counter #2	
(for use with a Counter Interface Module)	D-10
Appendix E: PLC Memory	E-1
DL205 PLC Memory	E-2
Non-volatile V-memory in the DL205	E-3
Appendix F: DL205 Product Weight Table	F-1
DL205 Product Weight Table	F-2
Appendix G: ASCII Table	G-1
ASCII Conversion Table	G-2
Appendix H: Numbering Systems	H-1
Introduction	H-2
Binary Numbering System	H-2
Hexadecimal Numbering System	H-3
Octal Numbering System	H-4
Binary Coded Decimal (BCD) Numbering System	H-5
Real (Floating Point) Numbering System	H-5
BCD/Binary/Decimal/Hex/Octal -What is the Difference?	H-6
Data Type Mismatch	H-7
Signed vs. Unsigned Integers	H-8
AutomationDirect.com Products and Data Types	H-9
DirectLOGIC PLCs	H–9
C-more/C-more Micro-Graphic Panels	H-9

XX

Appendix I: European Union Directives (CE)	I-1
European Union (EU) Directives	I-2
Member Countries	I-2
Applicable Directives	I-2
Compliance	I-2
General Safety	I-3
Special Installation Manual	I-4
Other Sources of Information	I-4
Basic EMC Installation Guidelines	I-5
Enclosures	I-5
Electrostatic Discharge (ESD)	I-5
AC Mains Filters	I-6
Suppression and Fusing	I-6
Internal Enclosure Grounding	I-6
Equi-potential Grounding	I-7
Communications and Shielded Cables	I-7
Analog and RS232 Cables	I-8
Shielded Cables within Enclosures	I-8
Analog Modules and RF Interference	I-9
Network Isolation	I-9
DC Powered Versions	I-9
Items Specific to the DI 205	I-10

Index

г 1	1 1	1	C			
2	h	6	Λt	(n	nte	ents

Notes