Bit Control Mode

In This Chapter. . . .

- Overview
- Setup Parameters for Bit Control
- Using the Keypad To Do Bit Control
- Bit Control Applications
- Chapter Summary

Overview

Bit Control Mode permits you to use keys on the DV-1000 keypad for individual control of eight I/O bits. The types of I/O bits that may be controlled are X, Y, and C. The GX type is also available on DL405 CPUs only. For most applications, C type (control relays) are the best choice.

The following figure shows an expanded view of the PLC's V-memory space. A DV-1000 setup parameter in V-memory points to a system I/O data word. It may point to an X, Y, C, or GX word location (we use control relays (C) as an example). The DV-1000 keypad will control the lower 8 bits of the word. At powerup the DV-1000 reads this Bit Control setup parameter. Then, whenever you select Bit Control Mode the DV-1000 keypad controls (writes) the state of the eight I/O bits.

The drawing above shows how the DV-1000 keypad can control eight bits in V-memory. However, for anything meaningful to happen something else has to read the bits and act on their status. This may occur in two ways:

- For X, C, and GX input types, ladder logic must reference the bit addresses as an input contact.
- For Y and GX output types, an output module point must exist at the addresses. In this case the ladder program must **not** reference the same output bits, in order to avoid a conflict.

WARNING: Bit Control is designed for debug purposes only. Major machine functions such as Start, Stop, Run, Jog, etc. need dedicated electrical controls with labels. The DV-1000's Bit Control Mode does not give a constant indication that the normal keypad functions have changed! Misuse of this tool can lead to damage of equipment or risk of serious injury to personnel.

Keypad Function In Bit Control Mode, the keys marked with index numbers in the figure below assume in Bit Control new functionality. They operate as momentary push-buttons, normally off. When pressed, each of the eight keys will turn on its associated I/O bit. They map to either X, Y, C, or GX types. When the key is released, the I/O bit automatically turns off. Press the Clear Key to exit Bit Control Mode. The Enter key is not used.

Accessing Bit To select Bit Control Mode, go to the options menu by pressing the **Options** Key. Bit Control Control is the first of three items you may select, so the cursor will already be positioned over item one.

Press Enter to select Bit Control. The display message will then ask for a confirmation of your choice by asking "Do you want Bit Control Mode?" At this point, when you press Enter the setup error message will be displayed as shown below. In the next section we show how easy it is to choose proper setup parameters.

PRES

S	ENT	
---	-----	--

D	0		Y	0	U		W	Α	Ν	Т		В	Ι	Т	
С	0	Ν	Т	R	0	L		Μ	0	D	Е	?			
Y	Е	S	:	Ρ	U	S	Η		Е	Ν	Т		K	Е	Y
Ν	0		:	Ρ	U	S	Η		С	L	R		K	Е	Y
7	6	5	4	3	2	1	0	7	б	5	4	3	2	1	0

NL00		
without	aatun	program

(without setup program)

Setup Parameters for Bit Control

The following table lists the subset of the DV-1000 setup parameters which pertain to Change Preset Mode. The parameter at V7625 selects the address of the bit-controlled word in system I/O space. The parameter at V7626 selects the powerup default mode.

V-Memory Location	Setup Parameter Description
V7625	Bit Control I/O Pointer
V7626	Powerup Default Mode

Now we have to choose the I/O address of the bits we want to control. Refer to the columns in the following tables which correspond to the type of CPU in your system. Since our PLCs map their discrete I/O bits into V-memory, we have to choose the corresponding address.

	DL130,	DL230	DL	240	DL250,	DL350	
I/O Type	Discrete Address (octal)	Word Address (octal)	Discrete Address (octal)	Word Address (octal)	Discrete Address (octal)	Word Address (octal)	
Input Points	X0 – X177	V40400 – V40407	X0 – X477	V40400 – V40423	X0 – X777	V40400 – V40437	
Output Points	Y0 – Y177	V40500 – V40507	Y0 – Y477	V40500 – V40523	Y0 – Y777	V40500 – V40537	
Control Relays	C0 – C377	V40600 – V40617	C0 –C377	V40600 – V40617	C0 -C1777	V40600 – V40677	
Global Inputs	N/A	N/A	N/A	N/A	N/A	N/A	

	DL	430	DL	440	DL	450
I/О Туре	Discrete Address (octal)	Word Address (octal)	Discrete Address (octal)	Word Address (octal)	Discrete Address (octal)	Word Address (octal)
Input Points	X0 – X477	V40400 – V40423	X0 – X477	V40400 – V40423	X0 – X1777	V40400 – V40477
Output Points	Y0 – Y477	V40500 – V40523	Y0 – Y477	V40500 – V40523	Y0 – Y1777	V40500 – V40577
Control Relays	C0 –C737	V40600 – V40635	C0 – C1777	V40600 – V40677	C0 – C3777	V40600 – V40777
Global Inputs	GX0 – GX777	V40000 – V40037	GX0 – GX1777	V40000 – V40077	GX0 – GX2777	V40000 – V40137
					GY0 – GY2777	V40200 – V40377

For example, suppose we assign Bit Control to the eight control relays C0 to C7. The table above gives the address of these as V40600, which we enter at V7625. Finally, we select Message Mode with Bit Control by entering "0012" in V7626. The following program does the parameter setup for these choices.

Using the Keypad To Do Bit Control

Selecting Bit Control and Status Modes This section requires the parameter setup program of the previous section to be loaded in your CPU. If you have done so, we're ready to see first-hand how bit control works from the keypad. The setup parameter you have loaded for V7625 points to control relays C0 to C7, located at V40600. Now, enter Status Display Mode to see bit control work. Then select variable type "C".

PRESS	+	-	-	+	5	•
C	0	0 [
C	1	0 [
C	2	0 [
C	3	0 [
7654	3 2	1 0	76	54	3 2 1	0

NOTE: when using some CPUs, the plus (+) only needs to be pressed once.

With Status Mode set up, now use the Options Menu to select Bit Control Mode.

	PRESS					5	0	РТ		đ	S	\geq	7		
				0	Ρ	Т	Ι	0	Ν						
1		В	Ι	Т		С	0	Ν	Т	R	0	L			
2		Ρ	Α	S	S	W	0	R	D						
3		S	Η	0	W		Ε	R	R	/	Μ	S	G		
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

NOTE: Line 3 (SHOW ERR/MESG) does not apply to some CPUs.

PRESS ENT

					_		_								
D	0		Y	0	U		W	Α	Ν	Т		В	Ι	Т	
C	0	Ν	Т	R	0	L		Μ	0	D	Ε	?			
Y	Е	S	:	Ρ	U	S	Η		Ε	Ν	Т		K	Е	Y
Ν	0		:	Ρ	U	S	Η		С	L	R		K	Е	Y
- 7	6	Б	1	2	2	1	0	7	c	F	1	2	2	1	0

After selecting Bit Control, the Status Mode display automatically returns. *The keypad is now in Bit Control Mode, and the display is in Status Mode!* This permits us to observe changes in C0 to C7 in real time for Bit Control key actions. Note that the display cursor is absent now, because the keypad function has changed.

Keypad Bit Mapping

Now we can have a closer look at the status of the bits in V40600 during bit control. In the figure below, the keypad maps to bits 0 through 7 as shown.

NOTE: Since the DV-1000 does word write operations, it writes zeros to bits 8 through 15 (C10 to C17). Therefore, avoid using these eight I/O points in your ladder program in order to avoid a conflict. This holds true for any X, Y C, and GX I/O point word address pointed to by V7625.

To observe Bit Control in action, follow the keystrokes in the following diagram. Notice the relative binary weighting of each key, and the normally-off momentary nature of each key switch.

7_7

Exiting Bit Control While the keypad is in Bit Control Mode, the display may be in either Status Display, Message Display, or Change Preset Modes. When you want the keypad to resume normal function, press the Clear Key to exit Bit Control Mode.

PRESS CLR															
D	0		Y	0	U		W	A	Ν	Т		В	Ι	Т	
С	0	Ν	Т	R	0	L		Μ	0	D	Е	?			
Y	Е	S	:	Ρ	U	S	Η		Е	Ν	Т		K	Е	Y
Ν	0		:	Ρ	U	S	Η		С	L	R		K	Ε	Y
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

Next, press the Clear Key a second time to confirm the exit. An exit message appears briefly. Then the display returns to the previous mode, and the keypad resumes its normal function associated with the display mode. In the previous section we were monitoring the status of C0 to C7 at address V40600. Notice that the cursor returns to indicate normal keypad functionality.

Mode

Bit Control Applications

I/O Debug

Bit Control Mode is most often used for debugging machines or processes. Using the setup parameter at V7625 we can configure Bit Control for X, Y, C, and GX types of I/O points. It's a good idea to plan the I/O points you want to use in Bit Control, and integrate it into the main ladder program. The main reason is that **Bit Control requests I/O points on. It is not a forced I/O feature!**

For example, consider the system shown below. Suppose we want to test output Y0 using Bit Control.

The I/O address of Y0 to Y17 is at V40500. The following program example sets up Bit Control Mode for Y0 to Y7. It shows Y0 being normally controlled by X0. However, **Iadder logic will overwrite the DV-1000's requested on state of Y0 at the end of every scan, because Y0 is also referenced as an output coil in the program!** See the next example for the proper method to do this.

WRONG!

Load octal address 40500 into the accumulator. V40500 is the location of Y0 to Y17.

Output this address to V7625, the location of the setup parameter for bit control.

Y0 is normally controlled by X0 in the application. It is also requested on during Bit Control, when the Change Preset Key is pressed.

Instead of trying to bit control Y0 directly, we use a control relay and do a logical OR with the normal control logic for Y0. Then we set up Bit Control Mode for C0 to C7. Now the conflict is eliminated, because C0 is only referenced as an input in the program.

CORRECT!

Parameter Setup: Bit Control

Bit Control With Message Display Mode

The ladder program in this example coordinates Bit Control keypad entries with Message Display output. The display announces the two modes as shown, and prompts you to press any bit control key. When any key is pressed, the message on the bottom line changes to name the key pressed.

В	Ι	Т		С	0	Ν	Т	R	0	L		М	0	D	Е
&		Μ	Ε	S	S	Α	G	Ε		Μ	0	D	Е		
Ρ	r	е	S	S		K	е	У	S		_	_	_	_	>
(n	0		k	е	У		р	r	е	S	S	е	d)
7	G	г	4	2	2	1	0	7	c		4	2	2	1	0

.....

PRESS CHG PRE															
В	Ι	Т		С	0	Ν	Т	R	0	L		М	0	D	Е
&		М	Ε	S	S	Α	G	Ε		М	0	D	Е		
Ρ	r	е	S	S		K	е	У	S		_	_	_	_	>
С	Η	G		Ρ	R	Ε		K	е	У					
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

		Г	- n	EC	50		IVI	SG					-		
В	Ι	Т		С	0	Ν	Т	R	0	L		М	0	D	F
&		М	Е	S	S	Α	G	Ε		Μ	0	D	Е		
Ρ	r	е	S	S		K	е	У	S		_	_	-	-	>
Μ	S	G		K	е	У									
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

The ladder program has no means of forcing the display into Message Display Mode, nor the keypad into Bit Control Mode. However, these modes may be selected from the keypad, as well as programmed as the powerup default. The program creates the display output with ACON and MOVMC instructions. Load the program below, and place the CPU in run mode. Then power cycle the CPU, and it should enter Bit Control and Message Display Modes. Watch the bottom line of the display respond as you press each Bit Control key.

NOTE: This example contains certain instructions including LDLBL, DLBL, ACON, and MOVMC which are discussed in detail in Chapter 4. Refer to the the section "Using the ASCII Constant (ACON) Instruction" for more information.

/_13

Multiplexed Bit Control

In some applications you may need bit control of more than 8 bits from the keypad. Using ladder logic, you can share (multiplex) the bit control keys among multiple outputs. Refer to the drawing below. For example, when the machine is in "Mode 0" the keypad's bit control maps to outputs Y0 through Y7. During "Mode 1" the keypad controls Y10 through Y17. In this way, eight keys are multiplexed among sixteen output points.

NOTE: The operator must be informed as to which mode is active before and during keypad use for bit control. One method is to use ladder logic to send a message to the DV–1000 display indicating which outputs are under bit control.

In this example, we will use the state of discrete input X0 to indicate the mode of the machine. X0 = OFF is Mode 0, and X0 = ON is Mode 1. The ladder logic program on the following page maps the bit control keys to control relay contacts C0 through C7 (see setup rung). The main program then uses X0 in conjunction with the control relays to control either the first or second bank of Y output points.

Load the example program in the CPU and place the CPU in Run Mode. You can use Status Display Mode to see the program work. Press the **Status** Key followed by the **Plus (+)** Key to view the status of Y output points. Then place the keypad in Bit Control Mode by pressing the **Options** Key and selecting Bit Control from the menu. When the status display returns, you can change between Mode 0 and Mode 1 using a discrete input at X0. Then observe the corresponding group of Y outputs.

7–16

Bit Control Mode

Bit Control **Toggle Function**

The keypad in Bit Control Mode operates as momentary switches, as you may recall. A bit is on only when its corresponding key is pressed. This example features a small program which changes the momentary nature into a latching, or toggling function. You can press a key once to turn on a bit, then press it again to turn off the bit!

After loading the program below, place the DV-1000 in Status Display Mode. Then monitor the status of control relays C00 through C39 as shown below. The keypad is mapped to C0 through C7, and the corresponding toggled bits are from C20 to C27.

The keypad must be in Bit Control Mode to toggle the bits as shown above. Press the **Options** Key, select Bit Control, and the status display will return automatically.

Key Points

Chapter Summary

Now we have covered Bit Control Mode and demonstrated how to turn on specific
I/O bits using the keypad.Summary ofWe may summarize some of the key points we have learned about Bit Control Mode

We may summarize some of the key points we have learned about Bit Control Mode in this chapter:

- Bit Control Mode only applies to the keypad. The display can be in any one of the other three modes during Bit Control.
- The keypad operates as normally open, momentary switches during bit control.
- Only the lower eight bits of V-memory locations may be directly addressed by bit control.
- After selecting a V-memory location for bit control, do not use its upper eight bits (the DV-1000 overwrites these while updating the whole V-memory word).
- If ladder logic contains an output point that references the same address as the bit controlled register, a conflict exists. The PLC scan will overwrite the keypad request.

Now you have the necessary information to install and use your DV-1000!