Quabbin Ethernet Cable - Cat6/6a/6e

	Ethernet Cat6/6a/6e Cable Selection								
Part Number	Wiring Standard	Jacket Color	Shield	No. of Pairs	Pair Colors	Description	Approximate Weight (lb/ft)	Minimum Cut Length (ft)*	Price per foot
<u>Q2034-1</u>	6a	Black	Shielded	4	Pair 1: Natural & Orange Pair 2: Gray & Brown Pair 3: Natural & Green Pair 4: Gray & Blue	shielded, 4 twisted pairs, 28 AWG, 7-stranded, tinned copper, foamed FEP conductor insulation material, PVC jacket, black, cut to length.	0.017	20	\$1.16
<u>Q2045-1</u>	6					shielded, 4 twisted pairs, 28 AWG, 7-stranded, tinned copper, foamed FEP conductor insulation material, PVC jacket, black, cut to length.	0.017		\$1.10
<u>Q2056-1</u>	6a					shielded, 4 twisted pairs, 26 AWG, 7-stranded, tinned copper, foamed FEP conductor insulation material, PVC jacket, black, cut to length.	0.022		\$1.18
<u>Q2067-1</u>	6					shielded, 4 twisted pairs, 26 AWG, 7-stranded, tinned copper, foamed FEP conductor insulation material, PVC jacket, black, cut to length.	0.022		\$0.99
Q2206-1	Cat6e	Blue	Unshielded		Pair 1 - Blue/White & Blue Pair 2 - Orange/White & Orange Pair 3 - Green/White & Green Pair 4 - Brown/White & Brown	unshielded, 4 twisted pairs, 24 AWG, 7-stranded, tinned copper, polyethylene conductor insulation material, PVC jacket, blue, cut to length.	0.024		\$0.49
Q2936-1	Cat6		Shielded			shielded, 4 twisted pairs, 26 AWG, 7-stranded, tinned copper, polyethylene conductor insulation material, PVC jacket, blue, cut to length.	0.025		\$0.72
Q2948-1	Cat6a					shielded, 4 twisted pairs, 26 AWG, 7-stranded, tinned copper, polyethylene conductor insulation material, PVC jacket, blue, cut to length.	0.025		\$0.76

^{*}See web store for maximum cut lengths

Please Note: Our prices on Ethernet Cables are closely tied to the market price for copper. This allows us to offer the best savings possible if conditions are favorable; however, it also means that our prices may increase if market conditions warrant.

www.automationdirect.com

Wires Cords and Cables

Quabbin Ethernet Cable - Cat6a

Ethernet Cat6a Cable Specifications								
		Physical Properties						
		<u>Q2948-1</u>	<u>Q2034-1</u>	<u>Q2056-1</u>				
Conductor Gauge and Stranding		26AWG 7/34 solid bare copper; 4 twisted pairs	28AWG 7/36 stranded tinned copper; 4 twisted pairs	26AWG 7/34 stranded tinned copper; 4 twisted pairs				
Assembly		Individual conductors twisted into pairs with a central spline and polyester binder under foil shield and PVC Jacket	Individual conductors twisted into pairs under foil shield and a LS PVC jacket					
Jacket		Blue Polyvinylchloride (PVC)	Black low smoke polyvinylchloride (PVC)					
Jacket Insulation Thickness		0.024 inch; Nominal	0.021 inch; nominal					
Shield		Aluminized Polyester Foil Shield (Foil In, 100% Coverage) with 26AWG Tinned Copper Drain	Aluminized Polyester Foil Shield (Foil In, 100% Coverage) with 28AWG Tinned Copper Drain	Aluminized Polyester Foil Shield (Foil In, 100% Coverage) with 26AWG Tinned Copper Drain				
Cable Overall Diameter		0.235 inch; Nominal	0.186 inch, nominal	0.223 inch, nominal				
Temperature Rating		-20°C to 75°C (-4°F to 167°F)	-20°C to 105°C (-4°F to 221°F)					
Plenum		No Yes						
Sunlight Resistant		No						
Conductor Insulation		High Density Polyethylene (HDPE)	Foamed FEP					
	Pair 1	Blue/White & Blue	Natural & Orange					
Color Code	Pair 2	Orange/White & Orange	Grey & Brown					
00101 0000	Pair 3	Green/White & Green	Natural & Green					
	Pair 4	Brown/White & Brown	Grey & Blue					
Bare Conductor Diameter		0.019 inch; Nominal	0.015 inch; nominal	0.019 inch; nominal				
Conductor Insulation Thickness		0.009 inch; Nominal	0.008 inch; nominal	0.010 inch; nominal				
Insulated Conductor Diameter		0.036 inch; Nominal	0.031 inch; nominal	0.039 inch; nominal				
Pair Diameter		0.072 inch; Nominal	0.062 inch; nominal	0.078 inch; nominal				
Cabled Core Diameter		0.208 inch; Nominal	0.145 inch; nominal	0.181 inch; nominal				
Print Legend		QUABBIN DATAMAX 6a F/UTP 100 OHM PATCH CORD P/N xxxx TYPE CMR C(UL) US CMG 4 PR 26 AWG SHIELDED 75C FT4/IEEE 1202 CAT 6a TIA-568.2-D ROHS (LOT DESIGNATOR) (SEQUENTIAL FOOTAGE	QUABBIN DATAMAX MINI-6a F/UTP PATCH CORD P/N xxxx PATENT PENDING C(ETL)US TYPE CMP 28 AWG 105C RoHS (LOT DESIGNATOR) (SEQUENTIAL FOOTAGE)	CORD P/N xxxx PATENT PENDING C(ETL)US TYPE CMP 26 AWG 105C				

Please Note: Our prices on Ethernet Cables are closely tied to the market price for copper. This allows us to offer the best savings possible if conditions are favorable; however, it also means that our prices may increase if market conditions warrant.

Quabbin Ethernet Cable - Cat6a

	Ethernet Cat6a Ca	ble Specifications (continued)					
	Electrical Characteristics (for 100 meters of cable)							
	<u>Q2948-1</u>	<u>Q2034-1</u>	<u>Q2056-1</u>					
Impedance (1-100 MHz)	100Ω ±15Ω (1-200 MHz)	100Ω ±15Ω (1 - 500MHz)	100 ± 15 Ω (1 - 100 MHz) 100 ± 20 Ω (100 - 500 MHz)					
Capacitance		13.5 pF/ft @ 1MHz; Nominal						
Resistance (nom)	26.0 Ω DC per 1000ft	68.2 Ω DC per 1000ft	42.6 Ω DC per 1000ft					
Voltage Rating (max)	300V							
Dielectric Withstand, Min.	1500V RMS							
	$1 \le f < 10 \text{ MHz} 20 + 5 \text{ LOG}(f) \text{ dB MIN}$	$1 \le f < 2 \text{ MHz } 17 + 9.5 \text{ LOG}(f) \text{ dB MIN}$	$1 \le f < 10 \text{ MHz } 20 + 5 \text{ LOG}(f) \text{ dB MIN}$					
Datum Lasa	10 ≤ f < 20 MHz 25 dB MIN	$2 \le f < 10 \text{ MHz } 20 + 5 \text{ LOG}(f) \text{ dB MIN}$	10 ≤ f < 20 MHz 25 dB MIN					
Return Loss	$20 \le f \le 500 \text{ MHz}$ $25 - 8.6 \text{ LOG}(f/20) \text{ dB MIN}$	10 ≤ f < 20 MHz 25 dB MIN	00 - (- 050 MH 05					
	$1 \le f \le 500 \text{ MHz}$ 44.3 – 15 LOG(f/100) dB MIN	20 ≤ f < 500 MHz 25 - 8.6 LOG(f) dB MIN	$-20 \le f \le 250 \text{ MHz } 25 - 8.6 \text{ LOG}(f/20) \text{ dB MIN}$					
Near End Crosstalk (NEXT)	$1 \le f \le 500 \text{ MHz}$ $42.3 - 15 \text{ LOG}(f/100) \text{ dB MIN}$	$5f \le 500 \text{ MHz}$ 42.3 – 15 LOG(f/100) dB MIN 1 $\le f \le 500 \text{ MHz}$ 44.3 – 15 LOG(f/100) dB MIN						
Power Sum Near End Crosstalk (PSNEXT)	$1 \le f \le 500 \text{ MHz}$ $24.8 - 20 \text{ LOG}(f/100) \text{ dB MIN}$	$1 \le f \le 500 \text{ MHz } 42.3 - 15 \text{ LOG}(f/100) \text{ dB MIN}$						
Power Sum Attenuation to Crosstalk Ratio, Far End (PSACRF)	N/A	$1 \le f \le 500 \text{ MHz } 24.8 - 20 \text{ LOG}(f/100) \text{ dB MIN}$						
Attenuation Crosstalk Ratio, Far End (ACRF)	$1 \le f \le 500 \text{ MHz}$ $27.8 - 20 \text{ LOG}(f/100) \text{ dB MIN}$	0) dB MIN $1 \le f \le 500 \text{ MHz } 27.8 - 20 \text{ LOG}(f/100) \text{ dB MIN}$						
Insertion Loss	$1 \le f \le 500 \text{ MHz}$ $1.5[1.82\sqrt{f}) + 0.0091(f) + 0.25/\sqrt{f}] \text{ dB MAX}$	$1 \le f \le 500 \text{ MHz } 1.95 \text{ [}1.82 \sqrt{f} + 0.0091(f) + 0.25/\sqrt{f} \text{] dB}$	$1 \le f \le 500 \text{ MHz } 1.5 [1.82 \sqrt{f} + 0.0091(f) + 0.25/\sqrt{f}] \text{dB}$					
Delay	$1 \le f \le 500 \text{ MHz } 534 + 36/\sqrt{f} \text{ ns MAX}$ $1 \le f \le 500 \text{ MHz } 534 + 36/\sqrt{f} \text{ ns MAX}$							
Delay Skew	1 ≤ f ≤ 500 MHz <45ns MAX							
TCL	N/A	$1 \le f \le 500 \text{ MHz } 30 - 100 \text{ MHz } 30 - 10$	$1 \le f \le 500 \text{ MHz } 30 - 10 \text{ LOG}(f/100) \text{ dB MIN}$					
ELTCTL	N/A	$1 \le f \le 30 \text{ MHz } 35 - 20 \text{ LOG}(f) \text{ dB MIN}$						
Velocity Of Propagation	ropagation 0.68							
UL Classification	(UL) Type CMR/CMG	NEC (ETL) TYPE CMP CEC C(ETL) TYPE CMP						
Agency Approvals	cULus, RoHS	cETLus, RoHS						

NOTE: All testing conducted off the reel.

Please Note: Our prices on Ethernet Cables are closely tied to the market price for copper. This allows us to offer the best savings possible if conditions are favorable; however, it also means that our prices may increase if market conditions warrant.

DataMax® Ethernet Cables

Quabbin DataMax Ethernet Cable

The Quabbin DataMax® Category network cables are proudly made in the USA and are available in Cat5e, 6, 6a or 6e. These cables are offered in 26AWG or 24AWG stranded tinned copper or bare solid copper in shielded or unshielded constructions. Designed to be round and smooth, Quabbin DataMax® Category network cables are compatible with most popular plugs for quick termination and easy installation.

When it comes to network cable, flexibility can mean many different things. The first and most obvious is the ease with which it bends. The importance behind having a pliable cable has to do with installation and cabinet routing. Flexibility allows easy manipulation between devices while increasing the durability, which is important when considering a lifetime of "moves & changes" that can occur in a dynamic network environment. Durability is paramount in allowing these changes to take place without compromising the cable.

The Quabbin DataMax® Category network cables exceed the requirements of ANSI/TIA-568-C.2, are compatible with Cat 5e and 5 hardware, and are suitable for applications from 10 Base-T to 1000 Base-T (Gigabit Ethernet).

Also available are Quabbin DataMax® MIL-spec Cat6 cables with black low smoke PVC jacket and special conductor insulations colors.

- * DataMax is a registered trademark of Quabbin Wire and Cable Corporation.
- ** EtherNet/IP is a trademark of ODVA, Inc.

Features

- Available in Category 5e, 6, 6e, and 6a
- In compliance with TIA 568-C.2 and TIA 1005
- Designed for use in EtherNet/IP systems **
- 4 twisted pairs
- · Unshielded or overall foil shields
- UL Type CM and UL AWM Style 2463 (80°C, 600V)
- Some cables available with conductor color code for MIL spec applications
- Cut to length in 1 foot increments
- Low 20 foot minimum length
- · Made in the USA

Click on the thumbnail or go to https://www.automationdirect.com/VID-WD-0016 for a short introduction on our cut to length cable

