
�
Writing the Setup
Program

����������������������

$��������������������������!���

$�
��������� ��
���������
�� �

$�
��!��	���!��

$�	���������
��!��

$�
�������	���#�����������
��������

$���"������������
�������	���#�

W
rit

in
g

th
e

S
et

up
 P

ro
gr

am
4–2

Writing the Setup Program

Choosing a Programming Device

You can write your setup logic by using either a handheld programmer or our
Windows-based Direct SOFT programming software. It is generally much easier to
use the software to generate the necessary setup logic. The examples that follow
show the instructions in this format. Connect your computer through the CPU, and
not through one of the slave units. Until you have completed the installation and the
setup logic, you cannot communicate with the CPU via the slave unit communication
ports.
To get started, enter Direct SOFT and carry out the normal Direct SOFT setup
procedures for communicating with your DL405 CPU. If you do not know how to do
this, refer to your Direct SOFT Manual. Chapter 11 of your DL405 User Manual also
has a very good explanation of the basic DL405 instruction set and examples of how
these instructions are used for writing general ladder logic. In this chapter, we will
only show you those instructions that are used to set up your Slice I/O system.
First open Direct SOFT and establish a communication link with your CPU. Then
enter the Edit Mode for programming. You should now be looking at a screen similar
to the one shown below:

The Direct SOFT window shown above depicts a program that has already been
written. Of course, your programming window will be empty when you first open it.
The following pages will show you how to write each part of your Slice I/O setup
program.

S
etup P

rogram
W

riting the

4–3
Writing the Setup Program

Writing Your Slice I/O Setup

Is your setup logic going to be in the main program body or is it going to be in a
subroutine? If you have a DL430, the decision is made for you. The DL430 does not
support the subroutine instructions, so you have to put the setup logic in the main
body of the program. The DL440, on the other hand, does support the subroutine
instructions. The reason for using subroutines is because the setup logic only needs
to be executed once. In the example below, we have suggested the use of SP00 so
that the subroutine is only executed during the first scan. This means it will not
impact the scan time on subsequent scans.

When you write your setup logic, it will be sandwiched in between rungs that affect
the status of certain internal relays that are assigned to Slice I/O setup. These relays
designate the beginning and end of your setup commands.

Direc tSOFT Display

SP00

Sample RLL Structure for Slice I/O Setup

Main program body goes here

Subroutine will go down here

���

��

�
� ��

���

SP00
���

�
��

�,�*,�(!��%$� �����+ ,-)�$+
$'�$��, ��# * ��.� $,# *
+ ,,$'"�(*�* + ,,$'"
�
����$� ������&�'-�%�(*
�$+�* , �������-,(&�,$���

RLL for designating address pointers for
mapping I/O of 1st Master goes here

SP00
���

�
�� � ,,$'"�,#$+�* %�.�, %%+�,#
����,#�,�.(-*�+ ,-)�$+
�(&)% , �!(*�,# ��+,
��+, *�

SP00
���

�
�	 � ,,$'"�,#$+�* %�.�, %%+�,#
����,#�,�.(-*�+ ,-)�$+
�(&)% , �!(*�,# ��'�
��+, *�

RLL for designating address pointers for
mapping I/O of 2nd Master goes here

��
� ,-*'�,(�,# �&�$'
)*("*�&�

Step 1:
Decide How You
Are Going to
Execute Your
Program

W
rit

in
g

th
e

S
et

up
 P

ro
gr

am
4–4

Writing the Setup Program

Whether you choose to write the Slice I/O setup program as a subroutine or as a part
of the main program, the procedure is still the same. If you are using automatic
addressing the process is very simple.

NOTE: You cannot use automatic addressing for both masters at the same time. If you
want to use automatic addressing, you have to choose only one channel. Also make
sure that the X’s and Y’s that are automatically assigned to the slaves are not used by
the other modules in the system. Automatic addressing starts at X200 and Y200.

 If you are using only one master module, then automatic addressing will probably be
the only type of addressing you may ever need. Using two masters, however,
produces some additional requirements. Automatic addressing can be used with
either the 1st Master or the 2nd Master, but it can only be used with one of them in
any given system. With automatic addressing, you do not have to assign the
individual slave I/O addresses with your setup ladder logic because the CPU
automatically assigns the data types (X and Y) and the respective addresses. You
do, however, have to make sure that the C672 is set to zero (0) and that either C670
or C674 are set to one (1). If you are using automatic addressing with the 1st Master,
then C670 must be set. If you are using automatic addressing with the 2nd Master,
then C674 must be set. Switch #4 must be ON in order to use Auto Addressing.

SP00
�
�

	���

�

	���

Automatic Addressing Setup for 1st Master

������������������

�����������������������������������

The use of automatic addressing for the 2nd Master is essentially the same, except
that you SET C674 instead of C670.

SP00
�
�

	���

�

	���

Automatic Addressing Setup for 2nd Master

������������������

�����������������������������������

When the CPU detects one of the above setups in your ladder logic, it will assign
slave inputs starting at X200 and slave outputs starting at Y200. It will consume 16
points for the inputs and 16 points for the outputs of each slave, regardless of which
type of Slice slave you are using. For example, a D4–SS–106 will consume 16 input
points and 16 output points, even though the slave does not have that many I/O
points available. You may have up to 12 slaves for the corresponding master
when using automatic addressing.

Step 2:
Write the Setup
Logic for Each
Slice Master

Automatic
Addressing

S
etup P

rogram
W

riting the

4–5
Writing the Setup Program

With manual or discrete addressing, you have some additional steps. In these cases,
you have to write ladder logic that tells the CPU which addresses and data types you
want to use. The CPU has predefined memory locations, called pointers (V74xx), that
you can use to accomplish this task. Simply use the tables in Appendix B to find the
V-memory location (V40xxx) that corresponds to the data type and address that you
want to use as the starting address. Then, you can use the setup logic shown in the
following examples to load these V-memory addresses into the pointers that the CPU
uses to determine the Slice I/O point addresses. By doing this, your setup logic merely
tells the CPU where to store the slave I/O points in the CPU image register area.

With manual addressing, you may use up to 15 slaves per channel. The
following example system only uses 3 slaves. We have decided to use global GX
data types in this example for our inputs and outputs. If you completed worksheets
for your system, simply transfer the worksheet data as shown here. Also, if you
examine this setup program, you’ll notice that the V40xxx addresses have been
properly designated as shown in Appendix B. The table at the bottom of the page is
used for finding the CPU’s V74xx pointer addresses.

Table of Reserved Memory for Manual Addressing

Input
Address

Number of
Input Pts

Output
Address

Number of
Output Pts

Number of
Input Pts

Output
Address

Number of
Output Pts

Input
Address

First Master Module Second Master Module

V7404 V7405 V7406 V7407 V7444 V7445 V7446 V7447

!� ��
Slice I/O Subroutine

���

�"!

��!���

Main Program Body

Go to Slice I/O subroutine

Note: �%709,�(8�8:)75:904,�542>�0-�:804.����������#
�57�����
���9/08�3:89�),�04�3(04�675.7(3�

First Master
 Slice Slave Inputs

���
������

�#"
$����

�#"

$����

��
���

!���

!�"

�
�	

�*9(2�������08�9/,
),.04404.�049,74(2�):--,7
(++7,88�-57��&���&���
"/08�08�+,9,7304,+�)>
255104.�(9�9/,�9()2,��04
�66,4+0=���

�46:9�!9(7904.��++7,88
�5049,7�-57��89��(89,7

�:3),7�5-�046:9�650498
�04������9/(9�(7,
),04.�*54-0.:7,+�

�577,8654+04.
�5049,7

���
�����

�#"
$���

�#"

$����

��
���

�*9(2�����
�08�9/,
),.04404.�049,74(2�):--,7
(++7,88�-57��&
���&�	�

�:3),7�5-�650498
�04������9/(9�(7,
),04.�*54-0.:7,+�

�577,8654+04.
�5049,7

First Master
 Slice Slave outputs

!���

!�"

�
��

",22���#�9/(9�9/08�08
9/,�),.04404.�5-�8,9:6

�577,8654+04.
�5049,7

Unit
Address

Model
Name Input Address Output Address

INPUT OUTPUT
No. Inputs No.Outputs

Slice Slave Worksheet

2

3

4

5

6

7

8

1

Input Bit Start Address: ________ V-Memory Address:V _______

Output Bit Start Address: ________V-Memory Address:V _______

Total Input Points Consumed _____

Total Output Points Consumed _____

��?!!?��
 GX00

GX20

GX60

GX100

GX00

GX60

48

48

40000

40003

11

12

13

14

15

10

9

��?!!?��

��?!!?��
 GX40

16 (only 10 used)

16 (only 10 used)

16 (only 10 used) GX120

Master Module No._______1

16 (only 6 used)

16 (only 6 used)

16 (only 6 used)

Input Points Used _____

Output Points Used _____

30

18

Slave No. _______1–3

!2(;,���

!2(;,��	

!2(;,��

�(89,7

�46:98��&����&��

�:96:98��&
���&��

�46:98��&	���&
�

�:96:98��&����'���

�46:98��&����&��

�:96:98��&�	���&�
�

�59,���(89,7�35+:2,
(4�),� 62(,+� 0495
(4>� (;(02()2,� 8259�
'5:�*5:2+�(285�:8,�(
	4+��(89,7��!,6(7(9,
<5718/,,98� 8/5:2+
),�-022,+�5:9�-57�,(*/
�(89,7�:8,+�

�4+�8,9:6�-57��89��(89,7���-�9/08�<,7,�9/,
8,9:6�-57�9/,�	4+�3(89,7��>5:�<5:2+�:8,
�
���95�,4+�>5:7�8,9:6�

 " ,9:74�95�675.7(3

How About the
Other Types of
Addressing?

Manual Addressing

W
rit

in
g

th
e

S
et

up
 P

ro
gr

am
4–6

Writing the Setup Program

The example shown below takes the same system shown on the previous page and uses
discrete addressing. Notice that it uses an expanded reserved memory table for the CPU
pointers and notice that each slave is setup individually . Also, the starting addresses
can be out of sequence. In the example, we have used X0–X17and Y0–Y17 as the
starting addresses for Slave #1 (V40400, V40500) and X240–X257 and Y240–Y257 as
the starting addresses for Slave #2 (V40413, V40513). We have not shown Slave #3, but
it could use any unused addresses from the X, Y, C, or GX tables, as well as be out of
sequence. With this method, It’s best to use separate worksheets for each slave. You
may have up to 7 slaves per master when using discrete addressing .

Table of Reserved Memory for Discrete Addressing

Slave Input
Address

Number of
Input Pts

Output
Address

Number of
Output Pts

Number of
Input Pts

Output
Address

Number of
Output Pts

Input
Address

First Master Module Second Master Module

1

2

3

4

5

6

7

V7404 V7405 V7406 V7407 V7444 V7445 V7446 V7447

V7410 V7411 V7412 V7413 V7450 V7451 V7452 V7453

V7414 V7415 V7416 V7417 V7454 V7455 V7456 V7457

V7420 V7421 V7422 V7423 V7460 V7461 V7462 V7463

V7424 V7425 V7426 V7427 V7464 V7465 V7466 V7467

V7430 V7431 V7432 V7433 V7470 V7471 V7472 V7473

V7434 V7435 V7436 V7437 V7474 V7475 V7476 V7477

��� �� Slice I/O Subroutine
���

���

������

Main Program Body

Go to Slice I/O subroutine

Note: �"4-6)�%5�57&4276-1)�21/;�-*�75-1+����������
�24�����
���6,-5�0756�&)�-1�0%-1�342+4%0�

First Master
Slice Slave #1 Input

���
������

� �
!����

� �

!����

��
��

����

���

�
�	

�'6%/�������-5�6,)
-16)41%/�&7**)4�%((4)55
*24�#��#�����,-5�-5
()6)40-1)(�&;�/22.-1+
%6�6,)�6%&/)��-1
�33)1(-:���

�1376��6%46-1+��((4)55
�2-16)4�*24��56��%56)4

�70&)4�2*�-1376�32-165
�-1������6,%6�%4)�&)<
-1+�'21*-+74)(�

�244)5321(-1+
�2-16)4

���
������

� �
!���

� �

!����

��
��

�'6%/�������-5�6,)
-16)41%/�&7**)4
%((4)55�*24�$��$���

�70&)4�2*�32-165��-1
�����6,%6�%4)�&)-1+
'21*-+74)(�

�244)5321(-1+
�2-16)4

First Master
Slice Slave #1 output

����

���

�
��

�)//��� �6,%6�6,-5�-5
6,)�&)+-11-1+�2*�5)673

�1(�5)673�*24��56��%56)4���*�6,-5�9)4)�6,)�5)673�*24�6,)�	1(
0%56)4��;27�927/(�75)��
���62�)1(�;274�5)673�

���
�����

� �
!����

� �

!����

��
��

���
�����

� �
!���	

� �

!���

��
��

�6'��*24�)%',�5/%8)

First Master
Slice Slave #2 Input

First Master
Slice Slave #2 output

Memory pointer

Memory pointer

Memory pointer

Memory pointer

�70&)4�2*�-1376�32-165
�-1������6,%6�%4)
&)-1+�'21*-+74)(�

�70&)4�2*�32-165
�-1������6,%6�%4)
&)-1+�'21*-+74)(�

Additional Slaves
Continue from
Here.

�16)41%/�&7**)4�%((4)55
*24� $	���$	���

�16)41%/�&7**)4�%((4)55
*24� #	���#	���

Slave #1

Slave #2

Note: ��((-6-21%/
924.5,))6�927/(�&)
'203/)6)(�*24
�/%8)�

Remember: You must
set Pos.4 of the DIP
switch to ON in order
for discrete addressing
to be available.

�244)5321(-1+
�2-16)4

�� Return to program

Discrete
Addressing

S
etup P

rogram
W

riting the

4–7
Writing the Setup Program

Slave Removal

There are certain types of applications where you might want slave stations to be
temporarily “logged out“. Or, there may be some point in the process where you want
to permanently remove one or more slaves. You may also want a slave to be
disconnected when there is any sort of communications error. Of course, you do not
want to disrupt anything else during the removal. This is when you need the slave
removal feature.
The slave removal feature allows you to remove a slave “on the fly”, and even add it
back to the system later. This can be triggered specifically in your program or it can
occur upon detection of an error in the system. When slave removal is
accomplished, the outputs for that slave go to zero (0) and the inputs are no longer
read by the CPU.
You have a choice between two types of slave removal:

� Manual Slave Removal -–At any point in your program, you can tell the
CPU to ignore the I/O points of a particular slave. There does not have
to be an error to trigger this feature.

� Automatic Slave Removal ––This mode is triggered only by the
occurrence of a Slice I/O error for the slave unit designated.

Don’t confuse the use of the words “automatic” and “manual” here with our earlier
reference for addressing modes. The terms here refer only to slave removal. For
example, you can manually remove a slave from a system that has been
automatically addressed. You can also automatically remove a slave from a system
that has been manually addressed. With the one exception covered in the bottom
paragraph, your addressing mode for your slave I/O points has nothing to do with
slave removal.
The slave removal feature has “primary pointer” and “secondary pointer” setup
locations. The primary pointer address is a V-memory assignment that is dependent
on which type of slave removal is being used (manual or automatic)and the location
of the master in the base (which slot). In a moment, we will show you a table of
addresses so that you can determine where the primary pointers are located.
The secondary pointer address is always V7411 for the 1st Master and V7451 for the
2nd Master. If you are removing slaves from a configuration that was
addressed using manual addressing, the secondary pointer address must
have hexadecimal FFFF written to it. In all other cases, these addresses can have
any number written to them except FFFF. Below is a sample segment of RLL that
shows FFFF being written to the secondary pointer address of the 1st Master for a
system that had its I/O points addressed manually.

SP0

�
����� ��������"�������������������������	�����

��

�����

���� ���������������������"�!�������� ���
��� �����������"����������!�������������
�������"�

Why Would You
Use Slave
Removal?

What is It?

Types of Slave
Removal

How Pointer
Addresses are
Used for Slave
Removal

Sample Logic for
Writing to
Secondary Pointer

W
rit

in
g

th
e

S
et

up
 P

ro
gr

am
4–8

Writing the Setup Program

Use the following steps to make use of the slave removal function:
1. Properly set the DIP switch on the rear of the master(s).
2. Determine the binary bit pattern for slave removal.
3. Determine the setup pointer for storing the bit pattern from Step 3.
4. Write the slave removal setup program.

Slave removal is only possible when you have placed Position 4 of the master
module’s DIP switch to ON.

�*()����&"����� $�)������&%() %$�

����(,)���%����()�'��%�*"�

To remove a slave from the system, you set the bits in a 16-bit block according to the
scheme shown below. This pattern must be converted to hex for programming.

How the Bits are Set to Designate Which Slaves to Remove
�	 �� �� �� �� ��
 � �
 	 � � � � ����

�%)�*(����%'�#�$*�"�'�#%+�"
Slave No. �	 �� �� �� �� ��
 � �
 	 � � � �

��)�)� (��)�)%���)%��*)%#�) ��"".
'�#%+���$.�("�+��)��)���(��
�%##*$ ��) %$�&'%�"�#�

�	 �� �� �� �� ��
 � �
 	 � � � � ��"�+�����)

��-

11 0 0 10000000 000

Hexadecimal 2A

0

Example for removing Slaves 1, 3, and 5:

� $���)����)�$*#��'� (�)��
(�#���(�)����"�+��$*#��'��)� (
��(.�)%�!$%,�,� ����)(�)%�(�)�
�$���.%*�(�)�)��(���)(��.%*
��$��%$+�')�)���� $�'.�+�"*��)%
��-���%) ����%,��)(����$���
'�(*")� $�����,� ��� (���-���

� � � �

� � � � � � � � � � � � � � � �

The table shown below gives the pointer address for setting up the slave removal.
Notice that the addresses vary according to the slot occupied by the master or
masters, as well as the type of removal being used.

Slot

V-memory for Manual Removal V-memory for Automatic Removal

1

2

3

4

5

6

7

V7660

V7661

V7662

V7663

V7664

V7665

V7666

0

V7667

V7670

V7671

V7672

V7673

V7674

V7675

V7676

V7677

Example:
If we are using Manual slave removal and the Master is in Slot 3..

We would store the hex number representing the slave or
slaves being removed in V7663.

4 Steps for Using
Slave Removal

Step 1:
Setting the DIP
Switch

Step 2:
Determining the Bit
Pattern for Slave
Removal

Step 3:
Determining the
Setup Pointer for
Storing the Bit
Pattern

S
etup P

rogram
W

riting the

4–9
Writing the Setup Program

The ladder logic is only slightly different for manual and automatic slave removal.
Anytime you are using manual slave removal , the last few commands of the setup
must transition either C673 or C677 OFF(for at least 500ms) and ON (for at least
500ms). C673 is used for the 1st Master and C677 is used for the 2nd Master. In the
example below, we have used a one-shot and a timer to make sure we hold the OFF
and ON states for the proper amount of time. We have decided to remove Slaves 1,
3, and 5 for the 1st Master when an ON signal is received from X0. This example
configuration, by assumption, had its I/O points configured using manual
addressing.

X0
��

���

� �
!
��	

C1

���

C2
���

���

��

V0

� �

��
	K5

> =

T0

���

��

�,/(4�75('�61�/$-(�574(�6+$6���
	�,5
����)14�$6�.($56�����/5(&�

��
��

��10(<5+16�67405����$�6,/(4��
�16(�� 5(�1)�6+(�10(<5+16�(0574(5�6+$6�6+(�6,/(4
9,..�016�6740����$*$,0�70.(55�#��64$05,6,105���
61�����6+(0����$*$,0�

C2

!��,5�6+(�&744(06�&1706�1)�6+(�6,/(4��"+(0�,6�,5�*4($6(4
6+$0�14�(37$.�61����/5��������6+5�1)�$�5(&10'���,6
9,..�6740������
	�

�)6(4���5(&10'������/5���6+(�6,/(4����6,/(5�176�
�+,5�&$75(5����61�4(5(6�51�6+(�6,/(4�,5�����

�(:����,5�6+(�(37,8$.(06�1)�6+(�%,0$4;�8$.7(
)14/('�9+(0�6+(�%,65�4(24(5(06,0*�6+(�5.$8(5
$4(�5(6�61�10(�

�+(�8$.7(�,5�5614('�,0�!
��	��"(�-019�6+,5
)41/�.11-,0*�$6�6+(�6$%.(�10��$*(�
<��

�(672��,6�)14
�56��$56(4

� �
!

�� �(&10'$4;�21,06(4�$''4(55�)14��56��$56(4

��

�����

�+,5�07/%(4�/756�%(�94,66(0�61�6+(�2412(4
5(&10'$4;�21,06(4�$''4(55�)14�5.$8(�4(/18$.�

�0;6,/(�;17�4(/18(�5.$8(5�)41/
$�5;56(/�6+$6�9$5�&10),*74('
/07..;��;17�/756�94,6(�����
61�6+(�5(&10'$4;�21,06(4�$'<
'4(55���$-(�574(������,5�016�,0
6+,5�$''4(55�9+(0�4(/18,0*
5.$8(5�)41/�$�5;56(/�&10),*74('
9,6+�(,6+(4�$761/$6,&�14�',5&4(6(
$''4(55,0*�

Using the the same master and slaves of our example, let’s take a look at how you
would setup the automatic removal of a slave . Notice three differences:

� You use SP0 to setup the slave removal on the first scan.
� The V-memory is found on the right-hand side of the table (Page 4-8).
� There is no setup bit (such as C673 or C677) used.

SP0
��

���

� �
!
�
	

� �
!

�� �(&10'$4;�21,06(4�$''4(55�)14��56��$56(4

��

�����

�+(�8$.7(������,5�75('�10.;�9+(0�4(/18,0*
5.$8(5�)41/�$�5;56(/�6+$6�9$5�&10),*74('
/07..;�

NOTE: Remember, when you determine the bit pattern value for automatic slave
removal , you have the option of merely setting Bit 0. This would indicate that you
want any slave to drop out when it causes a communications error. If you do this,
then you won’t have to set each slave bit individually. In the above example, we only
remove slaves 1, 3, and 5. Therefore, we decided not to use Bit 0. We instead set
Bits 1, 3, and 5 which resulted in the value HEX 2A.

Step 4:
Write the Slave
Removal Setup
Program

Sample Ladder
Logic for Manual
Slave Removal

Sample Ladder
Logic for
Automatic Slave
Removal

W
rit

in
g

th
e

S
et

up
 P

ro
gr

am
4–10

Writing the Setup Program

Rejoining Slaves

After removing a slave, usually the application will call for the slave to be brought
back on-line with the system.

In the case of automatic slave removal, the rejoining of the slave or slaves is
automatic. That is, as soon as the communications error is cleared, the removed
slave or slaves will be brought back on-line. You don’t have to write any logic.
In contrast to this, when slaves have been manually removed from the system, you
must write special ladder logic in order to bring them back on-line. There are two
steps for doing this:

1. Change the bit pattern in the primary pointer address so that zeros (0) are
in every bit position where you want a slave rejoined. Leave 1’s in the bit
positions where you have slaves removed that you wish to remain
removed.

2. Transition the setup bit (C673 or C677) from OFF (at least 500ms) to ON
(at least 500ms).

NOTE: The rejoining process causes the CPU to look at the bit pattern in the primary
pointer address and REJOIN any slave that has a corresponding bit that is 0, and
REMOVE any slave that has a corresponding bit that is set to 1. For example, if you
write a zero to bit 3 in order to rejoin Slave 3, but you have bits 6 and 7 with ones
stored at the time you transition the setup bit (C673 or C677); then, Slave 3 will be
rejoined but Slaves 6 and 7 will be removed. If you don’t want any slaves removed
when you rejoin one or more slaves, then make sure that all 0’s are written to the
primary pointer address.

Here’s an example of rejoining Slaves 1 and 3 to a Slice I/O configuration where
Slaves 1, 3, and 5 were previously removed. This means the bit pattern would be hex
20 because Bit 5 would still be a 1 and all the other bits would be 0’s.

X0

C1

���

C2
���

���

��

V0

� �

��
	K5

�

T0
���
��

�,0(5�86('�72�0$.(�685(�7+$7���
	�,6
����)25�$7�/($67�����06(&�

��
��

��21(=6+27�78516����$�7,0(5��
�27(�� 6(�2)�7+(�21(=6+27�(1685(6�7+$7�7+(�7,0(5
:,//�127�7851����$*$,1�81/(66�#��75$16,7,216���
72�����7+(1����$*$,1�

C2

!��,6�7+(�&855(17�&2817�2)�7+(�7,0(5��"+(1�,7�,6�*5($7(5
7+$1�25�(48$/�72����06��������7+6�2)�$�6(&21'���,7
:,//�7851������
	�

�)7(5���6(&21'������06���7+(�7,0(5�&217$&7�,6
21��:+,&+�5(6(76������,1&(����,6�7+(�,1387
&217$&7�)25�7+(��,0(5��7+(�7,0(5�,6�12:�',6$%/('
$1'���
	�,6�7851('�2))�

�(;����,6�7+(�(48,9$/(17�2)�7+(�%,1$5<�9$/8(
:+(1��/$9(6���$1'�	�$5(�5(-2,1('�%87��/$9(��
5(0$,16�5(029('�

�+(�9$/8(�,6�6725('�,1�!
��	��"(�.12:�7+,6
)520�/22.,1*�$7�7+(�7$%/(�21��$*(�
=��

�(783��,7�)25
�67��$67(5

� �
!
��	

��
���

What is It?

How is It Done?

Example of
Rejoining a Slave

S
etup P

rogram
W

riting the

4–11
Writing the Setup Program

Special Relays Used for Slice I/O

The Slice I/O system has several relays that are used with your system. Some of
these relays can be used in RLL routines that will detect and solve errors as a
troubleshooting tool. In some cases (i.e. C700, C720, C710,C730), you can use
Direct SOFT to look in corresponding V-memory addresses for more information on
the error. The following table lists all of the special relays assigned for Slice I/O.

Function
of Relay

First Master
Relay (s)

Second Master
Relay (s)

Description

End of Setup C670 C674 When set, these relays signify the end of the setup for all addressing
modes.

Clear I/O on Error
(Automatic Slave Removal)

C671 C675 These two relays are for determining whether you want the remote
input points to be set to zero when an error occurs, or whether you
want to freeze the current input status. If the relay is set, all the input
points are cleared when an error occurs.

Beginning of Setup C672 C672 When used in your ladder logic, this relay indicates that you are
beginning your setup of the addressing for a Slice I/O system. If this
relay is set to 1, the CPU knows to use manual or discrete
addressing. If it is reset to 0, the CPU knows to use automatic
addressing.

Activate Removal or
Rejoining of Slaves

C673 C677 When transitioned from OFF to ON these relays will either remove or
rejoin slaves depending on what is stored in the primary pointer
address.

Communication Error C700 C720 Automatically set by the CPU when there has been a communication
error. Check the individual bits at V7700 to find out if the 1st Master
or any of its slaves are responsible. Check the bits at V7701 to find
out if the 2nd Master or any of its slaves are responsible. A 1 in bit 0
of either V-memory location means the master has been setup wrong
(i.e. baud rate does not match its slaves). A 1 in any of the other bits
indicates that there is either no response from the corresponding
slave or the slave has failed a data test.

Mapping O.K. C710 C730 Check the individual bits at V7702 to find out which slaves of the 1st
Master have been mapped properly. Check V7703 for the mapping of
the 2nd Master’s slaves. If correct, there is a 1 in each bit position
where there is an active slave.

W
rit

in
g

th
e

S
et

up
 P

ro
gr

am
4–12

Writing the Setup Program

How to Use the Special Relays

Here are some example uses of these relays and an added explanation for each of
the relays discussed on the previous page:

These are setup flags for marking the beginning and end of your ladder logic that
sets up your Slice I/O configuration. C672 marks beginning of all addressing logic.
C670 is for ending setup for the 1st Master and C674 for the 2nd.

Example: Begin/End Setup for Manual Addressing of 1st Master

First Master
 Slice Slave Inputs

���
������

���
�����

���

�����

��

��

����

���

���

���
������

���
�����

���

�����

��

��

First Master
 Slice Slave outputs

���

���

	����������

���������

C671 is assigned to the 1st Master. C675 is assigned to the 2nd Master. When any
master can’t talk to one or more of its slaves, the “link” LED will come on to indicate
that there is a problem. The system will stop updating the remote I/O status in the
CPU for that slave unit. You have several options at that point. One such option is
either to freeze the last known input status that is in the CPU’s memory image
area, or to write a zero to each point . If these flags are OFF when the error occurs,
all inputs will be zeroed.

Example:
���

���

��� After power up, anytime a remote I/O error
occurs for the 2nd Master, the input status
will be frozen for the slave that has caused
the error.

C672/C670/C674

C671/C675
I/O Status On Error

S
etup P

rogram
W

riting the

4–13
Writing the Setup Program

C673 is assigned to the 1st Master, and C677 to the 2nd. These relays have to be
transitioned from OFF to ON in order to activate a setup written for removal and
rejoining of slaves. They must be OFF for at least 500ms and ON for at least 500ms
in order for the transition to be effective. In the example below, we are rejoining Slave
3 but Slave 5 remains removed. In this example, we are showing the 1st Master in
slot 3 and I/O assignments had been made previously using manual addressing
(ladder logic not shown here).

Example:
X0

C1

!�"

C2
"�

���

"�

V0

�#"

�
�
K5

�

T0
 !"
�	

"/3+8�;9+*�:5�3'1+�9;8+�:.':��
�
�/9
����,58�':�2+'9:�����39+)�

��
��

��54+@9.5:�:;849����'�:/3+8��
�5:+��#9+�5,�:.+�54+@9.5:�+49;8+9�:.':�:.+�:/3+8
=/22�45:�:;84����'-'/4�;42+99�&��:8'49/:/549���
:5�����:.+4����'-'/4�

C2

$��/9�:.+�);88+4:�)5;4:�5,�:.+�:/3+8��%.+4�/:�/9�-8+':+8
:.'4�58�+7;'2�:5����39��������:.9�5,�'�9+)54*���/:
=/22�:;84�����
�
�

�,:+8���9+)54*������39���:.+�:/3+8�"��:/3+9�5;:�
"./9�)';9+9��	�:5�8+9+:�95�:.+�:/3+8�/9����
=./).�:;849��
�
�����

�+>�	��/9�:.+�+7;/<'2+4:�5,�:.+�(/4'8?�<'2;+
=.+4�!2'<+�
�/9�8+05/4+*�(;:�!2'<+���8+3'/49
8+35<+*�

".+�<'2;+�/9�9:58+*�/4�$�

��%+�145=�:./9
,853�2551/4-�':�:.+�:'(2+�54��'-+��@��

!+:;6��/:�,58
�9:��'9:+8

�#"
$�

��
�	�

!2'<+���

!2'<+��	

!2'<+���

!2'<+��

!2'<+���

Rejoined

Active

Active

Active

Removed

�9:��'9:+8

�� �� �
 �	 �� �� � � �
 � �
 	 � ���"

!2'<+��5� �� �� �
 �	 �� �� � � �
 5 � 3 	 �

01 0 0 00000000 000 0

V7663 (Status after the above is executed by transitioning C673)

�� �� �
 �	 �� �� � � �
 � �
 	 � ���"

!2'<+��5� �� �� �
 �	 �� �� � � �
 5 � 3 	 �

11 0 0 00000000 000 0

V7663 (Status before the above is executed)

Note: Zero’s in any of the bit positions mean that you want a slave to remain
active if it is active or you want the slave rejoined if inactive. One’s in any of
the bit positions means that you want a slave to be removed if it is active or
you want a slave to remain removed if already removed.

� � 	
 � �!25:

".+�*/'-8'3�(+25=�9.5=9�:.+
9:':;9�',:+8�685-8'3�+>+);:/54�

C673/C677
Activate Removal
or Rejoining of
Slaves

W
rit

in
g

th
e

S
et

up
 P

ro
gr

am
4–14

Writing the Setup Program

�(%1%� 0%+!71� 5)++� "%� 1%2� 5(%-� 2(%0%�)1� !� communications error � "%25%%-� 2(%
0%1/%#2)4%�,!12%0�!-$�!�1+!4%�.0�1+!4%1�!11)'-%$�2.�2(%�0%+!7�-3,"%0�������)1�&.0
2(%��12��!12%0�!-$���	��)1�&.0�2(%�	-$��!12%0���-�!$$)2).-�2.�2(%1%�#.-20.+�0%+!71�
2(%0%�!0%� !+1.� ��,%,.07� +.#!2).-1� 2(!2�#!-�"%�31%$�2.�(%+/�/)-/.)-2� 2(%�%00.0�
������)1�!11)'-%$�2.�2(%��12��!12%0�!-$�������)1�!11)'-%$�2.�2(%�	-$��!12%0��.
1/%#)&)#!++7�)$%-2)&7�5(%2(%0�2(%�/0."+%,�)1�5)2(�2(%�,!12%0�.0�5)2(�.-%�.&�)21�1+!4%1�
7.3�#!-�(!4%�7.30�+.')#�#(%#*�1/%#)&)#�")21�)-�2(%�#.00%1/.-$)-'��8,%,.07�

�-%�%!17�5!7�2.�$.�2()1�)1�2.�+.!$�2(%�#.-2%-21�.&�2(%��8,%,.07�+.#!2).-�)-2.�2(%
!##3,3+!2.0�!-$�2(%-�#./7�)2�2.�.-%�.&�2(%���,%,.07�+.#!2).-1�2(!2�)1�!11)'-%$�2.
#.-20.+�0%+!71�2(!2�!0%�!4!)+!"+%�&.0�'%-%0!+�31%���(%-��7.3�#!-�31%�2(%1%�)-$)4)$3!+
#.-20.+�0%+!71�)-1)$%�.&�7.30�+!$$%0�+.')#�/0.'0!,�2.�(%+/�/)-/.)-2�2(%�%00.0����-�2(%
&.++.5)-'�%6!,/+%��5%�31%$�2(%�#(!021�)-��//%-$)6���2.�$%2%0,)-%�2(%���,%,.07
!$$0%11�&.0������������
������%�+.!$%$��������5()#(�)1�2(%�#.,,3-)#!2).-�%00.0
+.#!2).-�&.0�2(%�	-$��!12%0��!-$�2(%-�#./)%$�)2�2.����
���

Example:
���

��	� ��

 ���#.3+$�"%�!-�.32/32�2(!2
230-1�.-�!-�)-$)#!2.0�+)'(2�.0�!-
!+!0,�2(!2�)-$)#!2%1�2(%�	-$
�!12%0�)1�-.2�#.,,3-)#!2)-'
5)2(�.-%�.0�,.0%�.&�2(%�1+!4%1�

���
���
��

��
�����

��

���

 ��

��

���

 �

�.-2)-3%�5)2(�!1�,!-7�03-'1�!1�7.3�(!4%�1+!4%1

�(%-��)2���)1����230-���� �����0."+%,�5)2(��!12%0�

�(%-��)2�	�)1����230-���� �
���0."+%,�5)2(��+!4%���

V-memory address where the
status bits reside for the 2nd
Master.

Copy the status of each bit in successive order
starting with control relay C0.

��	�

��	�

�	

���

 ��

�(%-��)2�	�)1����230-���� �����0."+%,�5)2(��+!4%�	�
��	�

Bit 0 is used to indicate a problem with the master, so the first control relay that
contains slave information is C1. Also, notice how the control relays do not match up
with the slave number after bit 7. This is because the control relays are numbered in
octal, not decimal. For example, you’ll notice that slave 9 is represented by C11.

�� �� �
 �	 �� �� � � �
 � �
 	 � ��+!4%���")2

00 0 0 00001010 000 0

V7701 – 2nd master with communication errors at Slaves 11 and 9

�� �� �
 �	 �� �� � � �
 � �
 	 � ����

��� ��
 ��� ��� ��
 ��	 ��� ��� �� �
 C5 �� C3 �	 ��

00 0 0 00001010 000 0

V40600 – Control Relays C0–C17

��

�)2���)1�&.0�2(%��!12%0

C700/C720
Locate
Communications
Error

S
etup P

rogram
W

riting the

4–15
Writing the Setup Program

�����*2�"22*(.&%�3/�3)&��23��"23&1����
��*2�"22*(.&%�3/�3)&�	.%��"23&1���'�2&3��3)&2&
',"(2�*.%*$"3&�3)"3�3)&�����0/*.32�)"5&�#&&.�01/0&1,8�-"00&%���'�3)&8�"1&�/''��3)&.�*3
.%$"3&2�3)"3�"�2&340�01/#,&-�&7*232���.�"%%*3*/.�3/�3)&2&�$/.31/,�1&,"82��3)&1&�"1&
",2/� ��-&-/18� ,/$"3*/.2� 3)"3�$".�#&�42&%� 3/�)&,0�0*.0/*.3� 3)&�&11/1������	� *2
"22*(.&%�3/�3)&��23��"23&1�".%�����
�*2�"22*(.&%�3/�3)&�	.%��"23&1���/�20&$*'*$",,8
%&.3'8�3)&�,/$"3*/.�/'�3)&�2&340�&11/1��8/4�$".�)"5&�8/41�,/(*$�$)&$+�20&$*'*$�#*32�*.
3)&�$/11&20/.%*.(��9-&-/18�

�.&�&"28�6"8�3/�%/�3)*2�*2�3/�,/"%�3)&�$/.3&.32�/'�3)&��9-&-/18�,/$"3*/.�*.3/�3)&
"$$4-4,"3/1�".%�3)&.�$/08�*3�3/�/.&�/'�3)&���-&-/18�,/$"3*/.2�3)"3�*2�"22*(.&%�3/
$/.31/,�1&,"82�3)"3�"1&�"5"*,"#,&�'/1�(&.&1",�42&���)&.��8/4�$".�42&�3)&2&�*.%*5*%4",
$/.31/,�1&,"82�*.2*%&�/'�8/41�,"%%&1�,/(*$�01/(1"-�3/�)&,0�0*.0/*.3�3)&�&11/1����.�3)&
'/,,/6*.(�&7"-0,&��6&�42&%�3)&�$)"132�*.��00&.%*7���3/�%&3&1-*.&�3)&���-&-/18
"%%1&22� '/1��	���
������
����� &�,/"%&%�����	��6)*$)�*2�3)&�$/--4.*$"3*/.
&11/1�,/$"3*/.�'/1�3)&��23��"23&1��".%�3)&.�$/0*&%�*3�3/����
���

Example:
���

���� !��

!���$/4,%�#&�".�/43043�3)"3
341.2�/.�".�*.%*$"3/1�,*()3�/1�".
","1-�3)"3�*.%*$"3&2�3)&��23
�"23&1�*2�./3�$/--4.*$"3*.(
6*3)�/.&�/1�-/1&�/'�3)&�2,"5&2�

���
���
��

��
����	

�/.3*.4&�6*3)�"2�-".8�14.(2�"2�8/4�)"5&�2,"5&2

)&.��*3���*2�����341.����!�����1/#,&-�6*3)��,"5&���

)&.��*3�	�*2�����341.����!�	���1/#,&-�6*3)��,"5&�	�

V-memory address where the
status bits reside for the 1st
Master.

Copy the status of each bit in successive
order starting with control relay C20.

�	�

���

!��

�		

���

!�	

����

����

Note: ��	��*2�./3�42&%�)&1&�#&$"42&�3)&�'*123�#*3�%/&2�./3�-&".�".83)*.(�'/1�3)&�-"00*.(�$)&$+�

Since bit 0 is not used, the first control relay that contains slave information is C21.
Also, notice how the control relays relate to the slave number. You should remember
that control relays are numbered in octal, not decimal. For example, you’ll notice that
slave 8 is represented by C30 in this example.

V7702 – 1st master showing that everything is O.K. except Slave 8
has not been mapped properly. (Remember, the bit is off when a
problem exists.)

�� �� �
 �	 �� �� � � �
 � �
 	 � ��,"5&���#*3

11 1 1 11101111 111 0

�� �� �
 �	 �� �� � � �
 � �
 	 � ����

�
� �

 �
� �
� �

 �
	 �
� �
� �	� �	
 C25 �	� C23 �		 �	�

11 1 1 11101111 111 0

V40601 – Control Relays C20–C37

�	�

�*3���*2�./3�42&%

The only addressing mode that allows mapping of each individual slave is discrete
addressing. This is how individual slaves can be mapped improperly and result in the
error bit status shown above.

C710 and C730
Mapping O.K.

