
�

Table of Contents
Introduction 1.

Overview of the module’s operation 1.
Module Features 1.

Interrupt Signal Processing 2.
When do you need an interrupt? 2.
How does an interrupt solve response problems? 3.
How does the CPU process the interrupts? 4.
Special Considerations in CPU processing 5.
Do I have to use an Interrupt Module? 6.
What can I use in the Interrupt routines? 7.
When can the Interrupts Occur? 7.

Using the Interrupt Input Module...4 Steps 8.
Physical layout of the D4–INT components 8.

Step 1: Setting the DIP Switches 10.
Switch 1: Enabling/Disabling Input Points 10.
Switch 2: Selecting Rising or Falling Edge Triggering 11.
Switch 2: Selecting the Response Delay Time 12.

Step 2: Installing the Module in the Base 14.
Module Restrictions 14.
CPU Compatibility 14.
Installing the Module in the Base 14.
I/O Points Used 14.
I/O Assignments with a D4–430 15.
I/O Assignments with a D4–440 15.

Step 3: Connecting the Field Wiring 16.
Wiring Guidelines 16.
Typical Field Wiring and Internal Module Wiring 17.
Solid State Field Device Wiring 18.
Check the Terminal Block 18.

Step 4: Writing the Control Program 19.
Task 1: Enable / Disable the Interrupts 20.
Task 2: Place Numbered Interrupt Subroutines after the END Statement 20.
Task 3: Understand the Types of Instructions used in Interrupt Subroutines 21.
Task 4: Enter the Conditions for a Return from the Subroutine 22.

Troubleshooting 23.

Specifications 24.
Environmental Specifications 24.
Operating Specifications 24.

�

Manual Revisions
If you contact us in reference to this manual, be sure to include the revision number.

Title: DL405 Interrupt Input Module
Manual Number: D4–INTR–M

Issue Date Effective Pages Description of Changes

Original 8/94 Cover/Copyright
Contents
Manual History
1 — 24

Original Issue

Rev. A 6/98 Entire Manual
Manual Revisions

Downsize to spiral
Rev. A

1 11

Introduction

The DL405 Interrupt Input module (D4–INT) is
an 8-point isolated interrupt input module for
use with the DL405 family of products. The
module consumes 16 X input points and must
be installed in Slot 0, next to the CPU. You can
use two Interrupt modules, installed in Slots 0
and 1, if you are using a D4–440 CPU. (More
on this later.)
The Interrupt module is intended for applications
that have one or more high-priority events which
require immediate attention. That is, these are
events that cannot wait until the CPU has
finished it’s normal program execution.
When this high priority event occurs, the
interrupt module sends an interrupt signal to the
CPU. Once the interrupt is received, the CPU
immediately suspends its routine scan cycle
and jumps to a subroutine that corresponds to
the particular interrupt input signal.

The following diagram shows a brief overview of this concept.

�

�

�

�

�

�

Main Program

Interrupt
Subroutine(s)

1. Field device (event) triggers
an interrupt signal from the
interrupt module to the CPU.

2. CPU recognizes the interrupt, stops the
normal program execution, and jumps to
subroutine.

END Statement 3. CPU finishes the subroutine
execution and returns to the point
where it left in the normal
program execution.

This module has some great features that make interrupt processing easier.
� Interrupts are prioritized (lowest number takes priority)
� Rising or Falling edge trigger
� Selectable response delay (allows you to easily ignore false signals)
� Module parameters are easily selected by setting dipswitches on the

back of the module
� No complex programming, only simple ladder instructions are required
� If you don’t use all 8 points as interrupts, you can use the non-interrupt

points as regular discrete inputs.

Overview of the
module’s operation

Module Features

2

Interrupt Signal Processing

In normal circumstances, the CPU reads the status of input points, solves the relay
logic program, and then updates all of the output points. This process is called the
scan and usually takes place in a matter of milliseconds. The following diagram
shows how this works.

�����

�����	�

��	�

������

�����

�������

Scan

Critical Event

Input Module
Off/On Delay

Output Module
Off/On Delay

Normal Scan

�����

�����	�

������������

��

�����

�����	�

�������

�������������������
����

�����	�����
�����

Longer Overall
Response Time

As you can see from the diagram, there can be a delay between the actual
occurrence of the event and the CPU processing required to respond to the event. In
most applications, the scan happens dozens of times in a second, so the delay is not
critical.
However, in some applications you can have events that require an immediate
response. For example, your application may have a critical event that requires an
action to be initiated within 10 milliseconds of when the event occurs. Even with a
very fast scan time, it may take 10 to 30 milliseconds to completely scan the program
before it can update any outputs. So, you can see that you need some method for
interrupting the normal scan to react to these critical events.

When do you need
an interrupt?

3 33

What is needed is a mechanism for interrupting the normal CPU scan cycle when
something needs to be done. The CPU can then take care of what has to be done,
and go back to its normal business. Here is the same diagram, but it has been
changed to show how the CPU reacts if the Critical Field Event is being monitored by
an Interrupt Input Module. There are several things to notice.

� There is very little Off/On delay (the Interrupt Module has selectable
response, or filtering).

� When an interrupt is received, two things happen.
1. The CPU finishes executing the current program rung.
2. The CPU then suspends the normal program execution and jumps to
a subroutine that corresponds to the interrupt point that became active.

� By using Immediate Instructions in the Subroutine, you can quickly read
input points and write output points.

� The CPU resumes the normal program execution on the rung following
the rung that was being processed when the interrupt occurred.

Interrupt
Module

Off/On Delay

���

����

��

�
�

�����

�����
�

���������

��������������
�������

�����������������

Scan

Critical Event

Output Module
Off/On Delay

Shorter Overall Response Time

Normal Scan

�����

�����
�

��������
�
��������������������������

���������������������������������������

��
������������
����
�

����������������������

���������

�����
�����������

�������

����������

������������
�����
�

������
�����������������

�����������������
��
��

��

������

	����

�������

How does an
interrupt solve
response
problems?

4

It may help you to understand exactly how the CPU works together with the Interrupt
module to process the interrupt signals.
Single Interrupt Signal: When the interrupt input module senses an input signal, it
has an extremely short delay before it signals an interrupt. This Response Delay
(also called filtering) can be selected via a dipswitch setting and helps reduce the
possibility of false interrupt signals. (The Response Delay ranges are discussed in
more detail later in this manual.)
Once the delay period has passed, the module will latch an internal signal and send
an interrupt request to the CPU. Once the CPU receives the request, the CPU stops
its normal scan to jump into the interrupt routine; and at the same time, sends a reset
signal back to the module. The following diagram shows this operation.

Input signal (X0)

Latch output

CPU resets latch

������%

�����%

����%

�&��

���%�%�� ����� !$���

�'$�&�! ��%���%%�&��

$�%"! %������*�%����&�!

���+&!+� �����*��)"�$�%��%�� ����%� !&����%����!�'�����&���%

%�� ����!$�����%��%� �%�� &�$$'"&�$�#'�%&�&!�&���
���

�)��'&�

� &�$$'"&

%'�$!'&� ���

� &�$$'"&

���

�$!�$��

Internal CPU
processing

	����&!

���

�$!�$��

Multiple Signals from the Same Interrupt Input: There may be occasions where
several interrupt signals are received very close together in time. In the diagram
below, the time line reads from left to right. The first signal is latched. It takes 0.5
milliseconds to complete the latching process. If within that time span another signal
is sent, the module will ignore the second signal and only recognize the first.

�)��'&�

� &�$$'"&

%'�$!'&� ���

� &�$$'"&

���

�$!�$��

Internal CPU
processing

	����&!

���

�$!�$��

Input signal (X0)

Latch output

CPU resets latch

�����%

����%

�&��

���%�%�� ����� !$���

!��'$$���(������ &�$$'"&

"!� &�(�%���� ����&�����
�����%

��%"! %������*

�)"�$�%����&���%�� ��

How does the CPU
process the
interrupts?

5 55

Simultaneous Signals from Different Interrupt Inputs: What happens if the
module senses signals simultaneously from several of the interrupt input points? In
this case, there is a priority. The highest priority is given to X0, then comes X1, then
X2 and so forth down to X7. The diagram below shows two signals being received
simultaneously.

���
���

���������

������������

Input signal (X0)

Latch interrupt
request 0

Reset latch 0

Input signal (X1)

Reset latch 1

���������

	����
������
Internal CPU
processing

Latch interrupt
request 1

��
�����	���

������

���
���

���������

������������

���

In each of the previous examples, you noticed that the CPU interrupted the main
program execution. The CPU does not just drop everything that it is doing. Instead,
the CPU performs an orderly transition to the subroutine by finishing the current
program rung before it jumps to the subroutine. This typically takes at least 1ms, but
the actual response depends on the instructions on the rung. For example, if the
CPU receives the interrupt signal on a rung that contains several math instructions,
then the response will be slower than if the rung only contained a simple output coil.
There’s not much you can do about this, but just be aware of it.
Also, since the CPU only executes the logic in the interrupt subroutine, it does not
handle any communication requests from external devices. In the vast majority of
cases this is not a problem. However, some operator interfaces can have a “time out”
type of error if they issue a request and do not get a response from the CPU in a
certain amount of time. If you are using an Operator Interface and this happens, try
reducing the communications baud rate. The slower speeds usually allow for a
longer response time from the CPU.

Special
Considerations in
CPU processing

6

You don’t always have to use an Interrupt Input module to generate an interrupt.
Basically, an interrupt can be initiated two different ways:

� You can use a timed interrupt (an interrupt on a defined time interval,
D4–440 CPU only)

� Or, you can use the Interrupt Input module (interrupt triggered by a limit
switch closing, proximity switch, etc. via the interrupt module)

NOTE: These examples DO NOT show all of the instructions necessary to correctly
program an interrupt routine. This is discussed later in this manual.

Timed Interrupts: The D4–440 offers a
single timed interrupt instruction. You can
specify how often the interrupt occurs,
from 3–1000 ms. This is great for those
applications where you know you need to
take some action every so often. However,
it may also slow the system down because
it may be executing even when the
machine (or process) doesn’t need
immediate attention.

NOTE: The time value is specified in
BCD format. If the number is not BCD,
or if the number is outside of the range
(3–1000) then the routine will not work.

You may have noticed that we didn’t
mention the D4–430. Timed Interrupts are
not available in the D4–430.

INT O 17

END

Y5

OUTI

X20

LD

K10

X1

Load the constant, K10,
which will indicate 10
milliseconds

OUT

V737

Copy the value to V737, which
is used to define the time inter-
val for the timed interrupt

Interrupt happens
every 10ms in
this example

Hardware Interrupts: In the vast majority of
applications, there is some real world event,
such as a switch closing, etc. that needs to
trigger an interrupt. By wiring these field
devices to an Interrupt Input module, you
can easily interrupt the CPU scan cycle
when the event occurs.

INT O 1

END

Y5

OUTI

X20

INT O 2

Y6

OUTI

X21

When the interrupt input point comes on,
the CPU suspends the normal program
execution and jumps to the interrupt
routine that corresponds to the interrupt
point, X0 – Interrupt 0, X1 – Interrupt 1,
etc. Once the subroutine execution is
complete, the CPU returns to the main
program.
In the example shown here, the CPU
automatically handles the transition to
the Interrupt subroutine whenever
Interrupt input X1 comes on.

(Main program)

Executes routine
and returns to the

main program

IRT

Do I have to use an
Interrupt Module?

7 77

X20

In any of the above methods, Interrupt
subroutines are required. These subroutines
are placed after the END statement, which is
the last line in the main program.

INT O 1

END

Y5

OUTI

X21

INT O 2

Y20

OUTI

X40

(Main Program)

You can use most any type of instruction
in the subroutines. You can have math
instructions, data manipulation
instructions, etc. However, most people
find that the Immediate instructions and
the FOR/NEXT looping instructions are
the most useful. Immediate instructions
immediately read the status of inputs
and/or immediately update the outputs.
By using the immediate instructions in the
subroutine, the CPU can read input
points or update output points
immediately. By using the FOR/NEXT
instructions, you can literally have a
“mini-scan” by creating a loop inside of
the subroutine.

K3

FOR

Y6

OUTI

X22

NEXT

Y7

OUTI

X23

1 2 3

(Loops 3 times before
returning to program)

IRT

NOTE: You can use many different types of instructions in the interrupt subroutines.
However, if you use instructions with long execution times, such as some math
instructions, FOR/NEXT loops, etc., then you may exceed the Watchdog Timer limit.
The Watchdog Timer is set at 200ms from the factory. It can be changed with the
handheld programmer or Direct SOFT. You can also use a RSTWT instruction inside
of the subroutine to reset the Watchdog Timer.

The previous diagrams showed a simplified CPU scan cycle. However, the CPU can
process the interrupts during any portion of the scan cycle. Interrupts can occur in
the middle of the communications service, input update, output update, etc. So, this
helps ensure the fastest possible response for critical events.
The CPU does not perform any other functions when it is executing the interrupt
subroutine. For example, the CPU will not acknowledge any communication
requests until it has finished with the interrupt subroutine. Some devices, such as an
operator interface, may issue a communications timeout error due to the delay in the
response from the CPU. If this occurs, check your device documentation for
procedures on changing the communications timeout error settings.

Now that you understand how the CPU processes the Interrupts, you’re ready to
install (and use) the D4–INT Interrupt module.

What can I use in
the Interrupt
routines?

When can the
Interrupts Occur?

8

Using the Interrupt Input Module..4 easy steps!

Yes, I know, you were expecting to see the “4 Steps” on this page. But, first, take a
minute and familiarize yourself with the basic physical characteristics. It will make
the “4 Steps” even easier.

� The dipswitches are located on the back of the module.
� The terminal block can be easily removed by loosening the terminal

block retaining screws.
� The LED status indicators show you when an input is active.

Base Connector

DIP Switches for response
time, trigger direction &

enable/disable

Status Indicators

Removable
Terminal Block

�

���������������

�

�

�

�

�

�

�

	Front Back
���
��

Physical layout of
the D4–INT
components

9 99

Now that you know your options in using Interrupt processing, it’s time to learn the
basic setup requirements for the Interrupt Module.

���
���	

��	
���

Step 1:
Set the DIP Switches.

Terminal screws

Step 2:
Install the Module in the Base.

Step 3:
Connect the Field Wiring.

Step 4:
Write the Control Program with
simple RLL Instructions.

INT O 1

END

Y5

OUTI

X20

(Main Program)

IRT

10

Step 1: Setting the DIP Switches
There are two banks of DIP switches, SW1 and SW2, located on the back of the
module. You can enable/disable interrupt points; adjust the response time, and set
the triggering to be either on the rising edge or trailing edge of the input signal. The
following table shows an overview of the switch settings. If you are unsure of the
meaning of some of these options, just keep reading. The remaining paragraphs
explain these in more detail.

SW1 Position 1 2 3 4 5 6 7 8

Input 0 1 2 3 4 5 6 7

SW1
ON

SW2
ON

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

ON = ENABLE OFF = DISABLE

SW2 Position

Input 0, 1 2, 3 4, 5 6, 7

1 2 3 4

ON=Interrupt triggered by the rising edge
OFF= Interrupt triggered by the falling edge

SW2 Position

Input

5 6 7 8

0 1 2 3

ON=Low speed (slower response time)
OFF= High speed (faster response time)

By setting the switches1 thru 4 of
SW2, you can select whether the
interrupt is triggered on the rising or
falling edge.

By setting switches 5 thru 8 of SW2,
you can select the response delay
time from one of two ranges for
inputs 0 thru 3. This feature is not
available for inputs 4 thru 7, which
are always set at the fastest
response time.

By setting the switches1
thru 8 of SW1 to the ON
or OFF position, you can
ENABLE or DISABLE the
corresponding inputs as
indicated.

Positions 1–8 on Switch 1 enable (or disable) each individual interrupt point. Your
application may not require that all 8 inputs be used as interrupt inputs. For example,
you may only need one interrupt input. In this case, you could use the other 7 points
as normal discrete inputs.
You can enable the interrupt for each individual point by sliding the DIP switch to the
position ON for those input points you wish to enable. For example , sliding position 4
to the ON position will enable input point X3.

NOTE: Any points not designated as interrupt points can be used as normal input
points. For normal inputs, set the switch to the OFF position.

Switch 1:
Enabling/Disabling
Input Points

11 1111

Positions 1,2,3 and 4 on Switch 2 determine whether the interrupt is triggered on the
rising (leading) edge of the input signal or on the falling (trailing) edge of the input
signal. This is often called “triggering.” The examples earlier in this manual showed
the timing diagrams with a Rising edge trigger. They could just as easily have been
shown using the falling edge trigger. The following diagram shows the difference.

Rising edge
Module starts the latching
process when the input comes ON

���������

Falling edge
Module starts the latching
process when the input goes OFF

��������

Set the dipswitches to the ON position for rising edge triggering, or set the
dipswitches to OFF for falling edge triggering. You will also notice that the points are
“paired.” That is, one switch sets the triggering for two points. For example, If you
slide the position 2 switch to the ON position, then both inputs 2 and 3 will generate
interrupts on the rising edge.

Switch 2:
Selecting Rising or
Falling Edge
Triggering

12

Positions 5,6,7 and 8 on Switch 2 control the response delay time for the first four
input points only (X0 – X3). The response delay is defined as follows:

� Off-to-On Delay — the amount of time between the occurrence of the
field event, such as a switch closing, and the Interrupt module point
turning on.

� On-to-Off Delay — the amount of time after the field event is complete,
such as a switch opening, and the Interrupt module point turning OFF.

Field Event

�

�	�
�
�������������
������	��

����
��������
���

���������

	
���

���������

	
���

There are two speeds for response.
� Slow Response — 0.88ms–6.47ms for off–to–on delay and

1.64ms–9.81ms for on–to–off delay.
� Fast Response — 0.08ms to .59ms for off–to–on delay and

0.15ms–0.89ms for on–to–off delay.
You will notice a range of time shown. This means that there can be a variance in the
response times, so we recommend that you plan your application for the worst case
scenario.
Selecting a slower response time can be helpful if your critical field event input signal
is electrically noisy, or, if you expect contact bounce on the switch. (The slower
response provides more filtering and helps reduce the possibility of false input
signals. If you have input signals that are subject to these possibilities, it is best to
connect them to the first four inputs on the module.)

NOTE: This feature is available for the first four inputs (X0, X1, X2, and X3) only. The
response time for inputs X4, X5, X6 and X7 is not configurable. The off–to–on delay
and the on–to–off delay for these are fixed at the fast response delay time.

Switch 2:
Selecting the
Response Delay
Time

13 1313

The Response Delay helps you understand how long it will take the Interrupt module
to latch the interrupt signal. The following diagram shows how the Off-to-On delay
affects a signal with Rising edge triggering.

Input signal

Fast Response
(start of latch)

Response Delay Range for Rising Edge Triggering

Slow Response
(start of latch)

�����������

���	������
��

��		���������

�������
���

�������
���

For falling edge triggered signals, the On-to-Off delay is more important. This is
because the Interrupt module “waits” for a normally high signal to go low before it
recognizes an interrupt. So in this case, the On-to-Off delay filters out any bounce or
false signals.

Input signal

Fast Response
(start of latch)

Response Delay Range for Falling Edge Triggering

Slow Response
(start of latch)

�
����������

���������	
��

�������
�	���

�������
���

�������
���

14

Step 2: Installing the Module in the Base

WARNING: To minimize the risk of electrical shock, personal injury, or
equipment damage, always disconnect the system power before installing or
removing any system component.

There are a few restrictions that you need to consider if you are using this module.
� The module must be installed in slot 0, which is adjacent to the CPU.
� The module cannot be installed in an expansion or remote base. That is,

it must be installed in the CPU base.
� If you’re using a D4–440 CPU, you can have two interrupt modules.

They must be placed in slots 0 and 1.
� If you’re using a D4–440 CPU and a Timed Interrupt subroutine

(INTO17) then you cannot use the 8th interrupt point on the second
interrupt module. (The CPU always uses INTO17 as the Timed Interrupt
subroutine. If you’re using the timed interrupt, disable the hardware
interrupt point by using the dipswitch on the rear of the module.)

If you have purchased your CPU unit from PLCDirect , your firmware will
automatically support the interrupt input module. This module may also work with
405 CPUs provided by previous vendors. However, if you have an older 405 CPU
with firmware prior to version 1.6, you will have to upgrade your firmware. Contact
PLCDirect for more information.

With the power disconnected, you are now
ready to install the module in the base. Here
are four steps for making the installation:
1. Notice the module has a plastic tab at the

bottom and a screw at the top.
2. With the module tilted slightly forward,

hook the plastic tab on the module into the
notch on the base.

3. Next, gently push the top of the module
back toward the base until it is firmly seated
into the base.

4. Now tighten the screw at the top of the
module to secure the module to the base.

CPU
Unit

Interrupt
Input

Each Interrupt module consumes 16 input points. The first group of 8 points can be
used as the interrupt points. The second group of 8 points are used internally by the
interrupt module. If you do not use all of the first 8 points as interrupts, then you can
use them as normal discrete inputs. You cannot use the next 8 points for other
purposes. They are always reserved for the Interrupt module internal operation.

Module
Restrictions

CPU Compatibility

Installing the
Module in the Base

I/O Points Used

15 1515

You can only use one Interrupt module with the D4–430 CPU. Since the module
must be placed in slot 0, the points used are X0 – X17. The following diagram shows
an example system with I/O assignments.

����

�����

��	

���
	

��	

���
	

���	

�
	�
	

���	

�
	�
	

D4–INT

���	

���
	

X0
–

X7

X20
–

X27

X30
–

X67

X70
–

X77

Interrupt Input module must
be placed in Slot 0, next to the CPU Interrupt inputs appear on

I/O points X0 – X7

0 1 2 3 4 5

X10
–

X17
Slot

Each Interrupt module consumes 16 input points. You can use two Interrupt modules
with the D4–440 CPU. Since the modules must be placed in slot 0 and slot 1, the
points used are X0 – X17 for the first module, and X20–X37 for the second interrupt
module. If you only use one interrupt module, install it in slot 0. (You can install
another type of module in slot 1.) The following diagram shows an example system
with I/O assignments for a D4–440 with two Interrupt modules.

D4–INT

Interrupt Input modules must be placed
in Slot 0 and Slot 1, next to the CPU Interrupt inputs appear on I/O

points X0 – X7 for the first module;
X20 – X27 for the second module

0 1 2 3 4 5

D4–INT

����

�����

����

�����

��	

���
	

���	

�
	�
	

���	

�
	�
	

���	

���
	

X0
–

X7

X20
–

X27

X40
–

X77

X100
–

X107

X10
–

X17
Slot

X30
–

X37

NOTE: The D4–440 supports manual I/O configuration. That is, you can manually
assign the I/O addresses in any order. If you use manual configuration, make sure
you must install the Interrupt modules (and use the addressing) as shown above.

Now that you understand the module placement and the I/O assignments, you’re
ready to connect the field wiring.

I/O Assignments
with a D4–430

I/O Assignments
with a D4–440

16

Step 3: Connecting the Field Wiring

WARNING: To minimize the risk of personal injury or property damage,
remove all power from the PLC and field devices before wiring the module.

The D4–INT Interrupt Input Module features a
removable terminal block. It is held into place
by two retaining screws. You must first remove
the front cover of the module prior to wiring. To
remove the cover press the bottom tab of the
cover and tilt the cover up to remove it from the
module. Now loosen the retaining screws and
lift the terminal block away from the module.

Terminal screws

Retaining screw

Consider the following wiring guidelines.
1. There is a limit to the size of wire the modules can accept. The table lists the

maximum AWG for each module type (smaller wire is also acceptable). The
interrupt module follows the 16 point guidelines.

���
	�
����

����

���

������ ��

�	������ ��

��������� �������� ��

��������� ���
��� ��

NOTE: 12 AWG Type TFFN or Type MTW can be used on 8pt. modules. 14 AWG
Type TFFN or Type MTW can be used on 16pt. modules. Other types of wire may be
acceptable, but it really depends on the thickness of the wire insulation. If the
insulation is too thick and you use all the I/O points, then the plastic terminal cover
may not close properly.

2. Always use a continuous length of wire, do not combine wires to attain a
needed length.

3. Use the shortest possible cable length.
4. Where possible, use wire trays for routing.
5. Avoid running wires near high energy wiring.
6. If possible, avoid running input wiring in close proximity to output wiring.
7. To minimize voltage drops when wires must run a long distance, consider

using multiple wires for the return line.
8. Where possible, avoid running DC wiring in close proximity to AC wiring.
9. Avoid creating sharp bends in the wires.

Wiring Guidelines

17 1717

Shown below is a wiring diagram with typical field wiring and details relating to the
D4–INT module’s internal wiring. There are a few things you need to know before
you connect the field wiring.

� Each channel is isolated, so you can use sinking or sourcing
configurations independently for each point.

� Unused inputs do not require any connections.

0
1
2
3

4
5
6
7

TB

INTERRUPT MODULE

D4–INT

Optical
Isolator

Derating Chart for D4–INT

0

2

4

6

8

Points

Common

Input

C0

0
C0

0

C1
1

C2
2

C3
3

C4
4

C5
5

C6
6

C7
7

– +

10.2–26.4VDC
4–18mA

C1

1

C2

2

C3

3

C4

4

C5

5

C6

6

C7

7

– +

– +

+ –

+

–

� �� �� �� �� �� ��

Ambient Temperature (°C/°F)
�� �� �� �� ��� ��� ���

�°
	°

To

To L

Current sourcing configuration shown

Module sources current if
supply is connected as
shown here.

Module sinks
current if
supply is
connected as
shown here.

These points show you how to
connect the interrupts with a single
supply. This method can only be
used if no channel-to-channel
isolation is required.

+ –

+ –

Circuitry

+V
Response

Time Switch*

* Response delay switch is set with Switch 2,
positions 5–8 on rear of the module. This is only
for points X0 – X3. Points X4 – X7 are fixed at the
fastest response.

Typical Field
Wiring and Internal
Module Wiring

18

The following diagrams show how to connect solid state field devices to the D4–INT
Interrupt Input module.

* Response delay switch is set with Switch 2,
positions 5–8 on rear of the module. This is only
for points X0 – X3. Points X4 – X7 are fixed at the
fastest response.

Sensor

+

Output

– +
12 – 24VDC

C0

0

(NPN) Current Sinking
Field Device

�

NPN Field Device Example

Optical
Isolator

To
Circuitry

+V
Response

Time Switch*

D4–INT

* Response delay switch is set with Switch 2,
positions 5–8 on rear of the module. This is only
for points X0 – X3. Points X4 – X7 are fixed at the
fastest response.

Sensor

+

Output

+ –
12 – 24VDC

(PNP) Current Sourcing
Field Device

�

PNP Field Device Example

C0

0
Optical
Isolator

To
Circuitry

+V
Response

Time Switch*

D4–INT

After you have finished making the wiring
connections, install the terminal block on the
module, making sure the terminal block is
tightly seated. Be sure to tighten the retaining
screws. Also verify that the loose terminal block
LED is off when the system power is applied. If
the TB LED is on, then the terminal block is not
connected properly.

�

���������������

�

�

�

�

�

�

�

	
���
��

Once you have the field wiring connected, you’re ready to write the control program.

Solid State Field
Device Wiring

Check the Terminal
Block

19 1919

Step 4: Writing the Control Program

There are only a few simple instructions that
are necessary for proper module operation.
This section shows how to:
� Enable and Disable interrupts
� Enter an interrupt subroutine for each

interrupt point you are using
� Understand the types of instructions you

can use in an interrupt subroutine
� Set the condition(s) for a return from the

interrupt subroutine. (You can have
conditional and/or unconditional returns.)

The program shown to the right is an example
of the instructions needed to build a simple
interrupt solution. Of course, if you are using
more than one interrupt point in your
application, then you would have interrupt
subroutines for interrupt 1, interrupt 2, etc.
The following paragraphs discuss each of
these instructions in more detail.

Direct SOFT Display

INT O 0

X40

ENI

DISI

X42

END

Y5

OUTI

X20

X35

IRTC

X35

RSTI

Y0 Y1

IRT

Enable/Disable

X0 Interrupt
Subroutine

Conditional Return

Unconditional Return

INT O 1

FOR

K5

X101

IRT

X1 Interrupt
Subroutine

Unconditional Return

Y51

OUTI

X102 Y52

OUTI

NEXT

20

The CPU does not automatically monitor the
interrupt input signals. Instead, you have to use
an Enable Interrupts (ENI) instruction in your
ladder program to do this. Why does it work this
way? Simple. There may be times when you
don’t want the CPU to acknowledge the
interrupt signals. For example, you may only
want to monitor the interrupts if a certain safety
parameter is true (or false). If you don’t include
this instruction, the interrupts will be ignored.
The ENI instruction is used just like an output coil,
that is, you use an input contact, comparative
boolean contact, etc. that enables the interrupts.

X40

ENI

DISI

X42

If X40 is on, Interrupts
are enabled

If X42 is off, Interrupts
are disabled

Since you can enable the interrupts, it also makes sense that you be able to disable
the interrupts. (Actually, if you do not tell the CPU under what conditions it is to
disable the interrupts once they have been enabled, it will assume they will always
be enabled.) You can disable the interrupts with the Disable Interrupts (DISI)
instruction. This instruction also appears as an output coil and can be triggered like
any other type of output coil.
Helpful Hints: In our Direct SOFT programming software, the ENI and DISI
instructions are found on the Coil Browser. Look under the class listed as “Interrupt.”

Each interrupt input point needs a
corresponding interrupt subroutine. These
interrupt subroutines are placed after the END
statement, which is the last instruction in the
ladder program.
The interrupt subroutine for X0 should be
labeled INTO0, the routine for X1 should be
labeled INTO1, etc. If you’re using two interrupt
modules (D4–440 only), then the second
module would use INT10 for X20, INT11 for
X21, etc. The CPU automatically executes the
interrupt subroutine that corresponds to the
interrupt input point.

INT O 0

END

Y5

OUTI

X20

X0 Interrupt
Subroutine

NOTE: That’s the letter “O” in front of the number. The Direct SOFT screen
automatically puts an “O” there for you and it must be there. Don’t delete it!

WARNING: If you have a D4–440 CPU, two hardware interrupt modules, and
you are using a Timed Interrupt, then you cannot use INTO17 as a hardware
triggered interrupt subroutine. (This means you could not use the 8th
interrupt input point on the second Interrupt module.) The software interrupt
is triggered off of Interrupt 17, and you don’t want a conflict.

Helpful Hints: In our Direct SOFT programming software, the INT instructions are
found on the Box Browser. Look under the class listed as “Interrupt.”

Task 1:
Enable / Disable
the Interrupts

Task 2:
Place Numbered
Interrupt
Subroutines after
the END Statement

21 2121

You can use many different types of instructions in the interrupt subroutines. For
example, you may need comparative boolean contacts, math instructions, etc.

Controlling I/O Points in Subroutines:
In most cases, the goal is a fast response. So
you should try to use the Immediate
Instructions to update any I/O points. These
instructions look like regular contacts with an
“I” in them. They work differently from the
regular contacts because the CPU
immediately reads the input status from the
module and immediately updates the output
module when the instructions are executed.
This provides a much faster response. (The
CPU normally only updates the inputs and
outputs in a “batch update” at the beginning
and end of the scans respectively.)
Helpful Hints: In our Direct SOFT
programming software, the Immediate
Instructions are available on the Editing Tool
Box, the Contact Browser, or the Coil Browser.

INT O 0

Y5

OUTI

X20

Read the status of input X20
immediately. If it is ON, turn
on output Y5 immediately.

END

FOR / NEXT Instructions: The FOR/NEXT
instructions allow you to build a “mini-scan”
within the interrupt subroutine. When the
FOR/NEXT loop is encountered, the CPU
loops through the instructions between the
FOR and NEXT instructions a specified
number of times before moving on to the rung
following the NEXT instruction.
Helpful Hints: In our Direct SOFT programming
software, the FOR/NEXT instructions are
available on the Coil Browser. Look under the
class listed as “Program Control.”

INT O 1

FOR

K5

X101 Y51

OUTI

X102 Y52

OUTI

NEXT

These rungs are
executed 5 times before
the CPU moves to the

next rung.

Constant K5
specifies
5 loops

END

NOTE: You can use many different types of instructions in the interrupt subroutines.
However, if you use instructions with long execution times, such as some math
instructions, FOR/NEXT loops, etc., then you may exceed the Watchdog Timer limit.
The Watchdog Timer is set at 200ms from the factory. It can be changed with the
handheld programmer or Direct SOFT. You can also use a RSTWT instruction inside
of the subroutine to reset the Watchdog Timer.

Task 3:
Understand the
Types of
Instructions used
in Interrupt
Subroutines

22

You have to describe the condition for a return
from the interrupt subroutine. That is, you have
to tell the CPU when to return to the main
program execution. There are two instructions
available: IRT (immediate return with no
condition) and IRTC (immediate return with a
condition).
The example shows an interrupt subroutine
that uses both commands. The conditional
return (IRTC) can appear anywhere in the
subroutine, but unconditional return (IRT) must
be the very last instruction in the subroutine.

INT O 0

Y5

OUTI

X20

X35

IRTC

X35

RSTI

Y0 Y1

IRT

Conditional Return –
If X35 is on, return to the
main program execution

Unconditional Return

END

(Main Program)

Helpful Hints: In our Direct SOFT programming software, the IRTC and the IRT
instructions are available on the Coil Browser. Look under the class listed as “Interrupt.”

You’ve just seen all of the steps involved in writing the control program. Now you’re
ready to use the Interrupt Input module to solve your high-speed interrupt problems!

Task 4:
Enter the
Conditions for a
Return from the
Subroutine

23 2323

Troubleshooting

If the D4–INT interrupt input module does not seem to be working properly, check the
following items.

1. Wiring connections: Incorrect and loose wiring cause the majority of
problems. Verify you have wired everything correctly and that the
connections are tight.

2. DIP switch settings: Make sure you have set all the DIP switches
correctly. (Page 10 shows the various settings available.)

3. Noise or bounce: If the field device you have connected has too much
contact bounce, or if you are possibly picking up some noise on the input,
try additional input filtering by setting the DIP switches to the Slow
Response Delay. This is available on X0–X3 only. Refer to Page 10 for the
proper DIP switch settings.

The following table provides additional troubleshooting details:

Symptoms Possible Causes Corrective Action

TB indicator is ON Terminal block is loose. Make sure terminal block is
securely connected to the
module.

Input indicator lights do not come on. 1. Power not present.
2. Invalid DC level signal

being sent to module.

1. Apply power.
2. Check the voltage level of

the incoming signal.

CPU does not initiate actions in sub-
routine quickly enough.

1. Immediate instructions have
not been used in subroutine.

2. Critical action logic too far
down in scan of subroutine.

1. Use immediate instructions
where possible.

2. If possible, make sure
critical actions are placed on
rungs immediately following
the INT box.

Interrupt does not occur. 1. ENI and DISI instructions
are not entered properly.

2. Input signal does not last
longer than the shortest
selected Response Delay
time.

3. Bad module.

1. Check these commands in
the main program.

2. Find a way to make the
input pulse last longer.

3. Replace the module.

24

Specifications

Operating Temperature 0° to 60° C.
Storage Temperature –20° to 80° C.
Operating Humidity 5 to 95% (non-condensing).
Air Composition No corrosive gases permitted.
Vibration MIL STD 810C 514.2.
Shock MIL STD 810C 516.2.
Voltage Isolation 1500 VAC, 1 minute duration.
Insulation Resistance 10M ohms at 500 VDC.
Noise NEMA ICS3–304.

Power Budget Requirement 500 ma @ 5 VDC.
Maximum number of modules D4–430, 1.

D4–440, 2
Location of module CPU Base only,.

D4–430 –Slot 0 only
D4–440 –1st module, Slot 0

2nd module, Slot 1
Diagnostics Loose terminal block.
Maximum Voltage 26.5 VDC.
Input Range 10.2 VDC to 26.4 VDC, 3.8mA.

@ 12 VDC, 8.3mA @ 24 VDC
9.5 mA maximum

ON input level 9.5 VDC.
OFF input level 3.0 VDC.
Minimum ON current 4.0 mA.
Maximum OFF leakage 1.5 mA.
Impedance 2.4k�.
Internal power consumption 5 VDC, 100mA max..
OFF to ON response delay (fast mode) 0.8 ms to 0.59 ms. . .
ON to OFF response delay (fast mode) 0.15 ms to 0.89 ms. . .
OFF to ON response delay (slow mode) 0.88 ms to 6.47 ms. .
ON to OFF response delay (slow mode) 1.64 ms to 9.81 ms. .
Interrupt priority Highest priority: X0.

Lowest priority: X7 (if two modules
are used with D4–440, then priority
is X0 – X7, then X20 – X27)

Environmental
Specifications

Operating
Specifications

