
13
Understanding the
Operation

���
�� �����!���������

%�
���
����!������ ��

%�� ���������"����!��
$��

%�� ����!������������ ������!�
����

%����������������!����������������$

%������ !���������#�	"���� ������!����

G
et

tin
g

S
ta

rt
ed

U
se

r A
pp

lic
at

io
n

G
ui

de
lin

es
D

4–
H

S
C

U
nd

er
st

an
di

ng
 O

pe
ra

tio
n

3–2
Understanding the Operation of the HSC

The Operating Basics

Although most readers of this manual will have had prior experience with the PLC
and its various modules, there are some unique features belonging to the HSC, of
which you must become familiar. These include:

� How the HSC reserves X (inputs) and Y (outputs).
� The X and Y assignment table of the HSC
� The concept of shared memory and its relation to V-memory
� Reading and writing data to shared memory
� How numbers are stored in shared memory

The pages that follow in this chapter will tell you in detail how all of the above
operations are handled.

U
ser A

pplication
G

uidelines
D

4–H
S

C
U

nderstanding O
peration

3–3
Understanding the Operation of the HSC

Assigning Your Data Types

The DL405 family uses the octal (base 8) numbering system to designate I/O points.
The letter X is always used to indicate inputs and the letter Y indicates outputs. Each
I/O point also has a number associated with it, i.e. X12, Y32, etc. Assigning letters
and numbers to I/O is referred to as “configuring your I/O”. I/O can be configured in
one of two ways: automatically or manually . We will assume throughout this
manual that you have used the automatic option. If you plan to manually configure
your I/O, then you should read your DL405 User Manual in order to know how to
perform the configuration.
The DL405 CPUs automatically examine any installed I/O modules (including
specialty modules) and establish the correct I/O configuration and addressing on
power-up. For most applications, you never have to change or adjust the
configuration.
The I/O addresses are assigned using octal numbering, starting at X0 and Y0. The
addresses are assigned in groups of 8, 16, 32, or 64 depending on the number of
points for the I/O module. The following diagram shows the I/O numbering scheme
for an example system. Notice that the automatic addressing feature assigns
numbers to the I/O of the HSC module, just as it does for other modules.

������

���������
����	

������
������������

�����	

������
�����������
������	

������

���������
������	

������������

������������
�����		

������������

The HSC module will automatically consume 16 inputs and 32 outputs. The table on
Page 5 of this chapter shows you how the HSC X’s and Y’s are assigned to specific
functions.

Automatic
Configuration

G
et

tin
g

S
ta

rt
ed

U
se

r A
pp

lic
at

io
n

G
ui

de
lin

es
D

4–
H

S
C

U
nd

er
st

an
di

ng
 O

pe
ra

tio
n

3–4
Understanding the Operation of the HSC

If you are using automatic addressing, the DL405 CPU will look at how many I/O
points are in the modules located to the left of the HSC, and automatically start
numbering the X’s and Y’s of the HSC at the next available octal numbers. You need
to know these number assignments in advance of writing your RLL, because they
play an important role.

On the previous page, we placed the HSC in Slot 2. You could place it in any slot. If
you place the HSC module in the first slot of your base, the process for immediately
knowing the numbers assigned to your HSC X’s and Y’s is simple because you can
merely substitute 00 for the values of m and n in the I/O assignment table. In such a
case, you would not have to figure out what X’s and Y’s were committed to modules
located to the left of the HSC, because there are none!

X
No.

Function

FunctionY
No.

Xn+0

Xn+1

Xn+2

Xn+3

Xn+4

Xn+5

Xn+6

Xn+7
Xn+10

Xn+11

Xn+12

Xn+13

Xn+14

Xn+15

Xn+16

ON if current count is greater than preset

ON if current count is equal to preset

ON if current count is less than preset

Latched ON if overflow occurs (reset with Ym+1)

Status of CCW output

Status of OUT2 (brake) output

Status of CW output

Status of OUT1 (deceleration) output

Status of Limit Switch 2

Status of Limit Switch 1

ON if doing a search for home position

ON if a sampling is being conducted

NOT USED

ON for missing terminal block

ON if external power supply for outputs is missing or OFF

Ym+0

Ym+1

Ym+2

Ym+3

Ym+4

Ym+5

Ym+6

Ym+7

ON to reset OUT1 and OUT2 when in HSC run

ON to reset overflow flag (Xn+3)

Rising edge of this signal copies offset value into current count

ON for HSC run

Used to control CCW when not in HSC RUN or Home Search

Used to control OUT2 when not in HSC RUN or Home Search

Used to control CW when not in HSC RUN or Home Search
Used to control OUT1 when not in HSC RUN or Home Search

IN OUT OUTH
S
C

X00-X17

Y00-Y37

In this example we have placed the HSC
in slot 0 of the CPU base. This simplifies
X and Y identification because X’s and
Y’s both start at 00.

For example:
 Xn+6=X6=Status of CW output
 Ym+3=Y3=ON for HSC RUN

Using the X and Y
Assignment Table

U
ser A

pplication
G

uidelines
D

4–H
S

C
U

nderstanding O
peration

3–5
Understanding the Operation of the HSC

The following table provides all of the X and Y assignments for the HSC module. The
letter “n” is the starting octal number for the inputs; and the letter “m” is the starting
number for the outputs.

The Y outputs that are shaded have an external counterpart. That is, there are
connecting terminals and labels on the module, so that field devices can enable
these functions. Consequently, you can enable these functions either by setting the
respective bits through ladder logic alone, or you can enable them by sending
signals from external devices. You can use both methods within a single program.
The Y outputs that are shaded in the table have external counterparts (LD=Ym+2,
RUN=Ym+3, C.INH=Ym+10, LATCH=Ym+11, RST=Ym+12).

X
 No.

Function Y
 No.

Function

Xn+0 ON if current count is greater than preset Ym+0 ON to reset OUT1 and OUT2 when in HSC run

Xn+1 ON if current count is equal to preset Ym+1 ON to reset overflow flag (Xn+3)

Xn+2 ON if current count is less than preset Ym+2 Rising edge copies offset value into current count

Xn+3 Latched ON if overflow occurs (reset with Ym+1) Ym+3 ON for HSC run

Xn+4 Status of CCW output Ym+4 Used to control CCW when not in HSC RUN or
Home Search

Xn+5 Status of OUT2 (brake) output Ym+5 Used to control OUT2 when not in HSC RUN or
Home Search

Xn+6 Status of CW output Ym+6 Used to control CW when not in HSC RUN or Home
Search

Xn+7 Status of OUT1 (deceleration) output Ym+7 Used to control OUT1 when not in HSC RUN or
Home Search

Xn+10 Status of Limit Switch 2 Ym+10 ON to temporarily suspend counting (inhibit
counting)

Xn+11 Status of Limit Switch 1 Ym+11 Rising edge of this signal will latch the current count
into shared memory

Xn+12 ON if doing a search for home position Ym+12 If ON, it resets current count to zero

Xn+13 ON if a sampling is being conducted Ym+13 OFF=Quadrature mode
ON=UP/DOWN mode

Xn+14 NOT USED Ym+14 Change state to change count direction

Xn+15 ON for loose or missing terminal block Ym+15 Rising edge of this signal will invoke Home Search.
You cannot use this if in HSC RUN.

Xn+16 ON if external power supply for outputs is missing or OFF Ym+16 ON for x2 count operation
(quadrature mode only/Ym+17 must be OFF)

Xn+17 ON if HSC detects an error Ym+17 ON for x4 count operation (quadrature mode only)

Ym+20 If OFF it will automatically reset current count to zero
when current count=preset.
If ON will not reset automatically unless count is at
max or minimum.

Ym+21 Rising edge of this signal will start the sampling
feature

Ym+22 Must be ON to enable external LD function

Ym+23 ON to reset CW and CCW

*This manual was written for the latest version of the Ym +24 Not UsedThis manual was written for the latest version of the
D4-HSC. If you have an HSC that was purchased from
another vendor it may not support these features

*Ym+25 ON to reset Home Search error.
another vendor, it may not support these features.

*Ym+26 ON to enable reset with INZ.

**Available on HSC modules with production codes
 9502 (Feb.’95) or later.

**Ym+27 If turned ON before invoking Home Search, OUT2
(brake) will turn ON when Home is found.

I/O Assignment
Table

G
et

tin
g

S
ta

rt
ed

U
se

r A
pp

lic
at

io
n

G
ui

de
lin

es
D

4–
H

S
C

U
nd

er
st

an
di

ng
 O

pe
ra

tio
n

3–6
Understanding the Operation of the HSC

Reading and Writing Shared Memory

We provided a simple description of shared memory in Chapter 1, but it is important
to understand it in detail. It resides in the HSC and it is shared by the DL405 CPU and
the HSC itself. The table below shows how the memory is allocated. The data flow
diagram is from the perspective of the DL405 CPU. Notice that it can only write four
of the parameters from its V-memory to the shared memory, but it can read all seven
parameters from shared memory into V-memory.

Not shown in the data flow chart is the reading and writing capability from the HSC
point of view. The HSC reads and writes to the shared memory continuously, and it
can do this for any of the seven parameters.

On the following page we will show you how to use your ladder logic program to read
and write data to shared memory.

Current Count

Offset Value

Preset Value

Deceleration

Latched Count

Sampled Count

Timebase

Shared Memory Map Data Flow Direction

����

���� �����

����

����

���� �����

���� �����

���� �����

Address
(hex)

Data

00

04

08

0C

10

14

16

(4 bytes)

(4 bytes)

(4 bytes)

(4 bytes)

(4 bytes)

(4 bytes)

(2 bytes)

Range= –8388608 thru 8388607

Range= –8388608 thru 8388607

Range= –8388608 thru 8388607

Range= –8388608 thru 8388607

Range= –8388608 thru 8388607

Range= 0 thru 8388608

Format: 8-digit BCD

Range= 1 thru 9999

Format: 8-digit BCD

Format: 8-digit BCD

Format: 8-digit BCD

Format: 8-digit BCD

Format: 8-digit BCD

Format: 4-digit BCD
(Total time=above value x 3ms)

����	
�
 Shared Memory

(From DL405 CPU Perspective)

to

03

to
07

to

0B

to
0F

to
13

to
15

to
19

Address
(octal)

00

04

10

14

20

24

26

to

03

to
07

to

13

to
17

to
23

to
25

to
31

Contents and Data
Flow

U
ser A

pplication
G

uidelines
D

4–H
S

C
U

nderstanding O
peration

3–7
Understanding the Operation of the HSC

NOTE: In the vast majority of cases, you will use your RLL program to
exchange data between the CPU and the HSC. However, if you have a
handheld programmer, you can use AUX 47 to read and write shared memory.
This can be helpful in some troubleshooting or startup situations. There are
no commands available in Direct SOFT at this time to directly write data to
shared memory .

When using your RLL program to write data into shared memory, you must first load
the data into V-memory. Then as a second step, you write it from V-memory into the
shared memory area. The ladder logic below shows how you would use this
two-step process to load a deceleration value into shared memory. Here we have
loaded the deceleration value into its reserved address of shared memory. As you
can tell from the table on the previous page, the starting address is hex 0C and it
occupies 4 bytes.

SP0

Copy decel value from
V2000 to shared memory

K4

WT

LD
K0C

V2000

SP0

Load decel value into V2000

OUTD
V2000

LDD
K6000

LD
K3

LD

Location of HSC in base:
Base 0 and slot 3

Transferring 4 bytes (deceleration value)

into shared memory starting at hex 0C

from V2000/V2001

Number of pulses before you want
deceleration to be turned ON

CPU memory area

ON first scan only

ON first scan only

Step 1

Step 2

Note: We are using SP0 above
because it is ON for one scan only.
We could just as easily have used
any permissive contact instead.
Keep this in mind for all future
logic examples where we show
the use of SP0.

NOTE: If you are using the octal address of shared memory instead of hex, use LDA
instead of LD. If you are loading a BCD number with more than 4 digits, use LDD.

Quite often in your RLL you will want to move data the opposite direction––from
shared memory to V-memory. The example below shows you how to read all 26
bytes (7 parameter values) from shared memory into V-memory.

����

�����

���

�

�����

���

������	��#�� ���#����� ��#�!$��

�"� #��""� ������($�#

#$�"$� ���$�#��"������!"(���

� $!��)���!"(�#$�"$� ���$������

All Data
��&�(#������$�"�$��
��"#$�#��

You don’t absolutely have to read all 26 bytes. You could only read those bytes you
need. For example, you might wish to latch the count at some point. In that instance,
the latched count value would be stored in shared memory (hex 10) and you could
store it in V-memory for later use.

����

�����

��

�

�����

���

������	��#�� ���#����� ��#�!$��

�"� #��""� �����($�#

#$�"$� ���$�#��"������!"(���

� $!��)���!"(�#$�"$� ���$���������������"�$��$��
�($�#�&�����'$� ��$�"!%���������

Selective
Data ��&�(#������$�"�$��

��"#$�#��

The Two-Step
Process for
Writing Data to
Shared Memory

Reading Data From
Shared Memory

G
et

tin
g

S
ta

rt
ed

U
se

r A
pp

lic
at

io
n

G
ui

de
lin

es
D

4–
H

S
C

U
nd

er
st

an
di

ng
 O

pe
ra

tio
n

3–8
Understanding the Operation of the HSC

Understanding How Numbers are
Stored In Shared Memory

With the exception of the sampling timebase, all of the numbers stored in shared
memory are 4 bytes in size. With the exception of the sampled count these numbers
can either be positive or negative. If you are not familiar with a signed bit BCD format,
this can be confusing.

You need to know how the numbers are stored in memory, so that you do not make
mistakes when writing to shared memory or become confused when using your
Watch Window in Direct SOFT to monitor the V-memory in which you are
transferring shared memory data.

With the exception of the timebase and the sampled count, the numbers available for
each parameter of shared memory can have a maximum positive value of 8,388,607
and a negative value of –8,388,608.

28-bits of the 4 byte space are used for the absolute value of the number and the
remaining 4 bits are used to indicate the sign. The diagram below explains how all
the bits are used:

����	
��
�� ��������	�
�����
���� �������	�
�����
���� ��

� � �

��$

��� ���$

�����	
��������$�"!#�$�!

���������$�!������&��%��'�����!�� �$��#�#"���

Take for example a preset value equal to 5,467,889. The diagram below shows how
it is placed into the shared memory. Notice that the sign bit is zero. If you were to read
this value from shared memory into V-memory; and then use the Watch Window to
monitor its BCD value, you would see the BCD number 5,467,889.

����	
��
�� ��������	�
�����
���� �������	�
�����
���� ��

� � �

��$

��� ���$�����!#�$�&���������$�&��

���
�	����&��%�

	��
����
�
�������

� � �� ��� � ��� ����������� � ���� ��

But what would happen if this number was a negative number, say –5,467,889? The
next page in this chapter will explain what you do.

Why is it
important?

Allocating the 4
Bytes of Memory

U
ser A

pplication
G

uidelines
D

4–H
S

C
U

nderstanding O
peration

3–9
Understanding the Operation of the HSC

Continuing with our example from the previous page, the number –5,467,889 would
have a 1 in the most significant bit (MSB) when placed in shared memory. What
confuses many people is that this would show up in a Watch Window as 85,467,889
in BCD.

��	
��
���� ����	�
�����
�������� ���	�
�����
����	�	� ��

� � �

��$

���!���$�����"#�$�&���������$�&��

���
�
�����&��%�

���
�
��������

� � �� ��� � ��� ����������� � ���� ��

�

���#��� ��!#� �!%#����

Let’s now take a look at some actual ladder logic to see how you would write a
negative number into shared memory. In the example below, we are writing a preset
into shared memory. Notice that we have used LDD to load values into the
accumulator and OUTD to output them into CPU memory when they are more than 2
bytes in size. With the exception of the timebase, all of the shared memory data
consumes 4 bytes of information each.

SP0

Copy preset value from
V2000 to shared memory

K4

WT

LD
K08

V2000

SP0

Load preset value into V2000

OUTD
V2000

LDD
K85467889

LD
K3

LD

Location of HSC in base:
Base 0 and slot 3

Transferring 4 bytes (preset value)

into shared memory starting at hex 08

from V2000/V2001

Load value into accumulator

CPU memory area

ON first scan only

ON first scan only

Step 1

Step 2

��$�#� ��
�
����

Ladder Logic Example

Notice that we loaded an 8-digit number with an 8 as the first digit. Remember you
are loading a BCD number and not a decimal value. Remember that the MSB is
always “8” when you are writing a negative number.
In the next chapter, you will learn how to put much of this knowledge to work by
writing the initial relay ladder logic that you need in order to setup your application.

Dealing With the
Negative Numbers

Placing a Negative
Number into
Shared Memory

The Next Chapter

