
Numbering
Systems II

AppendixAppendixAppendix

In This Appendix...
Introduction... I-2
Binary Numbering System.. I-2
Hexadecimal Numbering System.. I-3
Octal Numbering System.. I-4
Binary Coded Decimal (BCD) Numbering System.. I-5
Real (Floating Point) Numbering System.. I-5
BCD/Binary/Decimal/Hex/Octal -
What is the Difference?.. I-6
Data Type Mismatch... I-7
Signed vs. Unsigned Integers... I-8
AutomationDirect.com Products and Data Types... I-9

DL05 Micro PLC User Manual, 6th Edition, Rev. GI-2

Appendix I: Numbering Systems

Introduction
As almost anyone who uses a computer is somewhat aware, the actual operations
of a computer are done with a binary number system. Traditionally, the two possible
states for a binary system are represented by the digits for “zero” (0) and “one” (1)
although “off” and “on” or sometimes “no” and yes” are closer to what is actually
involved. Most of the time a typical PC user has no need to think about this aspect
of computers, but every now and then one gets confronted with the underlying
nature of the binary system.
A PLC user should be more aware of the binary system specifically the PLC
programmer. This appendix will provide an explanation of the numbering systems
most commonly used by a PLC.

Binary Numbering System
Computers, including PLCs, use the Base 2 numbering system, which is called Binary
and often called Decimal. Like in a computer there are only two valid digits a PLC
relies on, zero and one, or off and on respectively. You would think that it would be
hard to have a numbering system built on Base 2 with only two possible values, but
the secret is by encoding using several digits.
Each digit in the base 2 system when referenced by a computer is called a bit. When
four bits are grouped together, they form what is known as a nibble. Eight bits or
two nibbles would be a byte. Sixteen bits or two bytes would be a word (Table 1).

Thirty-two bits or two words is a double word.
Binary is not “natural” for us to use since we grow up using the base 10 system.
Base 10 uses the numbers 0-9, as we are all well aware. From now on, the different
bases will be shown as a subscripted number following the number. Example; 10
decimal would be 1010.
Table 2 shows how base 2 numbers relate to their decimal equivalents.
A nibble of 10012 would be equal to a decimal number 9 (1*23 + 1*20 or 810 + 110).
A byte of 110101012 would be equal to 213 (1*27 + 1*26 +1*24 + 1*22 +1*20 or 12810
+ 6410 + 1610 + 410 + 110).

Word
Byte Byte

Nibble Nibble Nibble Nibble
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1

32
67

8

16
38

4

81
92

40
96

20
48

10
24

51
2

25
6

12
8

64 32 816 24 1

Binary/Decimal Bit Pattern
Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Power 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

Decimal Bit
Value

Max Value 6553510

Table 2

DL05 Micro PLC User Manual, 6th Edition, Rev. G I-3

Appendix I: Numbering Systems

Hexadecimal Numbering System
The binary numbering system can be difficult and cumbersome to interpret for
some users. Therefore, the hexadecimal numbering system was developed as a
convenience for humans since the PLC (computer) only understands pure binary.
The hexadecimal system is useful because it can represent every byte (8 bits) as two
consecutive hexadecimal digits. It is easier for us to read hexadecimal numbers than
binary numbers.
The hexadecimal numbering system uses 16 characters (base 16) to represent
values. The first ten characters are the same as our decimal system, 0-9, and the
first six letters of the alphabet, A-F. Table 3 lists the first eighteen decimal numbers;
0-17 in the left column and the equivalent hexadecimal numbers are shown in the
right column.

Note that “10” and “11” in hex are not the same as “10” and “11” in decimal. Only
the first ten numbers 0-9 are the same in the two representations. For example,
consider the hex number “D8AF”. To evaluate this hex number use the same
method used to write decimal numbers. Each digit in a decimal number represents
a multiple of a power of ten (base 10). Powers of ten increase from right to left.
For example, the decimal number 365 means 3x102 + 6x10 + 5. In hex each digit
represents a multiple of a power of sixteen (base 16). Therefore, the hex number
D8AF translated to decimal means 13x163 + 8x162 + 10x16 + 15 = 55471. However,
going through the arithmetic for hex numbers in order to evaluate them is not
really necessary. The easier way is to use the calculator that comes as an accessory
in Windows. It can convert between decimal and hex when in “Scientific” view.
Note that a hex number such as “365” is not the same as the decimal number “365”.
Its actual value in decimal terms is 3x162 6x16 + 5 = 869. To avoid confusion, hex
numbers are often labeled or tagged so that their meaning is clear. One method of
tagging hex numbers is to append a lower case “h” at the end. Another method of
labeling is to precede the number with 0x. Thus, the hex number “D8AF” can also
be written “D8AFh”, where the lower case “h” at the end is just a label to make sure
we know that it is a hex number. Also, D8AF can be written with a labeling prefix
as “0xD8AF”.

Table 3

Decimal Hex Decimal Hex
0 0 9 9
1 1 10 A
2 2 11 B
3 3 12 C
4 4 13 D
5 5 14 E
6 6 15 F
7 7 16 10
8 8 17 11

DL05 Micro PLC User Manual, 6th Edition, Rev. GI-4

Appendix I: Numbering Systems

Octal Numbering System
Many of the early computers used the octal numbering system for compiled
printouts. Today, the PLC is about the only device that uses the Octal numbering
system. The octal numbering system uses 8 values to represent numbers. The
values are 0-7 being Base 8. Table 4 shows the first 31 decimal digits in octal. Note
that the octal values are 0-7, 10-17, 20-27, and 30-37.

This follows the DirectLOGIC PLCs. Refer to Chapter 3 bit maps and notice that the
memory addresses are numbered in octal, as well as each bit. The octal system is
much like counting in the decimal system without the digits 8 and 9 being available.
The general format for four digits of the octal number is:

(d x 80) + (d x 81) + (d x 82) + (d x 83)
where “d” means digit. This is the same format used in the binary, decimal, or
hexadecimal systems except that the base number for octal is 8.
Using the powers of expansion, the example below shows octal 4730 converted to
decimal.

Table 4 Octal Decimal Octal Decimal

0 0 20 16
1 1 21 17
2 2 22 18
3 3 23 19
4 4 24 20
5 5 25 21
6 6 26 22
7 7 27 23

10 8 30 24
11 9 31 25
12 10 32 26
13 11 33 27
14 12 34 28
15 13 35 29
16 14 36 30
17 15 37 31

4 7 3 0
512 64 8 1

0 x 80 = 0 x 1 = 0
3 x 81 = 3 x 8 = 24
7 x 82 = 7 x 64 = 448
4 x 83 = 4 x 512 = 2048

2520

positional
 value

decimal
equivalent

DL05 Micro PLC User Manual, 6th Edition, Rev. G I-5

Appendix I: Numbering Systems

Binary Coded Decimal (BCD) Numbering System
BCD is a numbering system where four bits are used to represent each decimal
digit. The binary codes corresponding to the hexadecimal digits A-F are not used
in the BCD system. For this reason numbers cannot be coded as efficiently using
the BCD system. For example, a byte can represent a maximum of 256 different
numbers (i.e. 0-255) using normal binary, whereas only 100 distinct numbers (i.e.
0-99) could be coded using BCD. Also, note that BCD is a subset of hexadecimal
and neither one does negative numbers.

One plus for BCD is that it reads like a decimal number, whereas 867 in BCD
would mean 867 decimal. No conversion is needed; however, within the PLC, BCD
calculations can be performed if numbers are adjusted to BCD after normal binary
arithmetic.

Real (Floating Point) Numbering System
The terms Real and floating-point both describe IEEE-754 floating point arithmetic.
This standard specifies how single precision (32-bit) and double precision (64-bit)
floating point numbers are to be represented as well as how arithmetic should be
carried out on them. Most PLCs use the 32-bit format for floating point (or Real)
numbers which will be discussed here.

Floating point numbers which DirectLOGIC PLCs use have three basic components:
sign, exponent and mantissa. The 32-bit word required for the IEEE standard floating
point numbers is shown in Table 6. It is represented as a number from 0 to 31, left
to right. The first bit (31) is the sign bit, the next eight bits (30-23) are the exponent
bits and the final 23 bits (22-0) are the fraction bits.
In summary:

The sign bit is either “0” for positive or “1” for negative;
The exponent uses base 2;
The first bit of the mantissa is typically assumed to be “1.fff”, where “f” is the field
of fraction bits.

BCD Bit Pattern
Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Power 103 102 101 100

Bit Value 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1
Max Value 9 9 9 9

Table 5

Real (Floating Point 32) Bit Pattern

Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Sign Exponent Mantissa

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continues from above)

Table 6

DL05 Micro PLC User Manual, 6th Edition, Rev. GI-6

Appendix I: Numbering Systems

BCD/Binary/Decimal/Hex/Octal -
What is the Difference?

Sometimes there is confusion about the differences between the data types used in
a PLC. The PLC’s native data format is BCD, while the I/O numbering system is octal.
Other numbering formats used are binary and Real. Although data is stored in the
same manner (0’s and 1’s), there are differences in the way that the PLC interprets it.
While all of the formats rely on the base 2 numbering system and bit-coded data,
the format of the data is dissimilar. Table 7 below shows the bit patterns and values
for various formats.

As seen in Table 7, the BCD and hexadecimal formats are similar, although
the maximum number for each grouping is different (9 for BCD and F for
hexadecimal). This allows both formats to use the same display method. The
unfortunate side effect is that unless the data type is documented, it’s difficult to
know what the data type is unless it contains the letters A-F.

32
67

8

16
38

4

81
92

40
96

10
24

51
2

25
6

12
8

64 32 816 24 1

20
48

Binary/Decimal Bit Pattern
Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Decimal Bit
Value

Max Value 65535

Hexadecimal Bit Pattern
Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Decimal Bit
Value

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

Max Value F F F F

BCD Bit Pattern
Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Decimal Bit
Value

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

Max Value 9 9 9 9

Octal Bit Pattern
Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit Value 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1
Max Value 1 7 7 7 7 7

Real (Floating Point 32) Bit Pattern
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Sign Exponent Mantissa

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued from above)

Table 7

32
67

8

16
38

4

81
92

40
96

20
48

10
24

51
2

25
6

12
8

64 32 816 24 1

DL05 Micro PLC User Manual, 6th Edition, Rev. G I-7

Appendix I: Numbering Systems

Data Type Mismatch
Data type mismatching is a common problem when using an operator interface.
Diagnosing it can be a challenge until you identify the symptoms. Since the PLC
uses BCD as the native format, many people tend to think it is interchangeable
with binary (unsigned integer) format. This is true to some extent, but not in this
case. Table 8 shows how BCD and binary numbers differ.

As the table shows, BCD and binary share the same bit pattern up until you get to
the decimal number 10. Once you get past 10, the bit pattern changes. The BCD
bit pattern for the decimal 10 is actually equal to a value of 16 in binary, causing
the number to jump six digits by when viewing it as the BCD. With larger numbers,
the error multiplies. Binary values from 10 to 15 Decimal are actually invalid for
the BCD data type.
Looking at a larger number, such as the value shown in Table 9, both the BCD bit
pattern and the decimal bit pattern correspond to a base 10 value of 409510. If bit
patterns are read, or interpreted, in a different format than what is used to write
them, the data will not be correct. For instance, if the BCD bit pattern is interpreted
as a decimal (binary) bit pattern, the result is a base 10 value of 1653310. Similarly,
if you try to view the decimal (binary) bit pattern as a BCD value, it is not a valid
BCD value at all, but could be represented in hexadecimal as 0xFFF.

Look at the following example and note the same value represented by the
different numbering systems.

Base 10 Value BCD Bit Pattern Binary Bit Pattern
4095 0100 0000 1001 0101 1111 1111 1111

Table 9

Data Type Mismatch
Decimal 0 1 2 3 4 5 6 7 8 9 10 11
BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 0001 0000 0001 0001
Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 0000 1010 0000 1011

Table 8

0100 0011 Binary

1 0 3 Octal

4 3 Hex
6 7 Decimal

0110 0111 BCD

0001 0010 0011 0100 Binary

0100 0110 0110 0000 BCD
1 1 0 6 4 Octal

1 2 3 4 Hex
4 6 6 0 Decimal

DL05 Micro PLC User Manual, 6th Edition, Rev. GI-8

Appendix I: Numbering Systems

Signed vs. Unsigned Integers
So far, we have dealt with unsigned data types only. Now we will deal with signed
data types (negative numbers). The BCD and hexadecimal numbering systems do
not use signed data types.
In order to signify that a number is negative or positive, we must assign a bit to
it. Usually, this is the Most Significant Bit (MSB) as shown in Table 10. For a 16-bit
number, this is bit 15. This means that for 16-bit numbers we have a range of
-32767 to 32767.

There are two ways to encode a negative number: two’s complement and Magnitude
Plus sign. The two methods are not compatible.

The simplest method to represent a negative number is to use one bit of the PLC
word as the sign of a number while the remainder of the word gives its magnitude.
It is general convention to use the most significant bit (MSD) as the sign bit: a 1 will
indicate a negative, and a 0 a positive number. Thus, a 16 bit word allows numbers
in the range ±32767. Table 12 shows a representations of 100 and a representation
of -100 in this format.

Two’s complement is a bit more complicated. A simple formula for two’s complement
is to invert the binary and add one (see Table 12). Basically, 1’s are being changed
to 0’s and all 0’s are being changed to 1.

Magnitude Plus Sign
Decimal Binary

 100 0000 0000 0110 0100
-100 1000 0000 0110 0100

Table 11

Two’s Complement
Decimal Binary

 100 0000 0000 0110 0100
-100 1111 1111 1001 1100

Table 12

Table 10 Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

DL05 Micro PLC User Manual, 6th Edition, Rev. G I-9

Appendix I: Numbering Systems

AutomationDirect.com Products and Data Types
DirectLOGIC PLCs

The DirectLOGIC PLC family uses the octal numbering system for all addressing
which includes: inputs, outputs, internal V-memory locations, timers, counters,
internal control relays (bits), etc. Most data in the PLC, including timer and counter
current values, is in BCD format by default. User data in V-memory locations may be
stored in other data types if it is changed by the programmer, or comes from some
external source, such as an operator interface. Any manipulation of data must use
instructions appropriate for that data type which includes: Load instructions, Math
instructions, Out box instructions, comparison instructions, etc. In many cases, the
data can be changed from one data type to another, but be aware of the limitations
of the various data types when doing so. For example, to change a value from
BCD to decimal (binary), use a BIN instruction box. To change from BCD to a real
number, use a BIN and a BTOR instruction box. When using Math instructions, the
data types must match. For example, a BCD or decimal (binary) number cannot be
added to a real number, and a BCD number cannot be added to a decimal (binary)
number. If the data types are mismatched, the results of any math operation will
be meaningless.
To simplify making, number conversions Intelligent Box (IBox) Instructions are
available with DirectSOFT. These instruction descriptions are located in Volume 1,
Chapter 5, in the Math IBox group.
Most DirectLOGIC analog modules can be setup to give the raw data in decimal
(binary) format or in BCD format, so it is necessary to know how the module is
being used. DirectLOGIC PID is another area where not all values are in BCD. In fact,
nearly all of the PID parameters are stored in the PLC memory as decimal (binary)
numbers.

NOTE: The PID algorithm uses magnitude plus sign for negative decimal (binary) numbers, whereas the standard
math functions use two’s complement. This can cause confusion while debugging a PID loop.

When using the Data View in DirectSOFT, be certain that the proper format is
selected for the element to be viewed. The data type and length is selected using
the drop-down boxes at the top of the Data View window. Also notice that BCD
is called BCD/Hex. Remember that BCD is a subset of hexadecimal so they share
a display format even though the values may be different. This is where good
documentation of the data type stored in memory is crucial.

C-more and C-more Micro-Graphic Panels
In the C-more and C-more Micro-Graphic HMI operator panels, the 16-bit BCD
format is listed as “BCD int 16”. Binary format is either “Unsigned int 16” or “Signed
int 16” depending on whether or not the value can be negative. Real number format
is “Floating PT 32”.
More available formats are, “BCD int 32”, “Unsigned int 32” and “Signed int 32”.

	Appendix I - Numbering Systems
	Introduction
	Binary Numbering System
	Hexadecimal Numbering System
	Octal Numbering System
	Binary Coded Decimal (BCD) Numbering System
	Real (Floating Point) Numbering System
	BCD/Binary/Decimal/Hex/Octal -
What is the Difference?
	Data Type Mismatch
	Signed vs. Unsigned Integers
	AutomationDirect.com Products and Data Types

