

DISEÑO Y CONFIGURACIÓN DEL SISTEMA

En este capítulo

Estrategias de diseño del sistema DL064-2
Colocación de los módulos opcionales
Configuración de entradas y salidas
Consumo de corriente
Configuración de los puertos del PLC DL064-7
Configuración ladder de los puertos del PLC DL064-9
Comunicación con diversos protocolos
Operación de un esclavo MODBUS RTU4-14
Operación de un maestro MODBUS RTU4-20
Operación de un maestro MODBUS RTU con MRX y MWX4-24
Operación con caracteres ASCII4-26

Estrategias de diseño del sistema DL06

Configuraciones del sistema de entradas y salidas (E/S)

Los PLCs DL06 ofrecen diversas configuraciones de E/S. Escoja la configuración que sea correcta para su aplicación, y tenga presente que los PLCs DL06 tienen la capacidad de poder agregar entradas y salidas con el uso de las tarjetas opcionales. Aunque no hay Remote I/O, se puede usar Terminator I/O y también hay muchas tarjetas opcionales disponibles. Por ejemplo:

- Varios módulos de E/S de corrente alterna y corriente continua
- Módulos de combinación de E/S
- Módulos análogos de E/S
- Módulos análogos combinación de E/S

Se puede desarrollar un sistema DL06 usando diversos arreglos usando los módulos opcionales. Vea nuestro manual de usuario de los módulos opcionales DL05/06 (D0-OPTIONS-MSP) en el sitio de Internet, www.automationdirect.com para más información detallada de la selección.

Configuraciones de redes

El PLC DL06 ofrece las formas siguientes de establecer una red:

- El módulo de comunicaciones de Ethernet conecta un DL06 con las redes de alta velocidad punto a punto o peer-to-peer. conecta un DL06 con redes de alta velocidad punto a punto o cualquier PLC puede iniciar comunicaciones con cualquier otros PLC u otras interfaces de operador, tales como C-more, al usar los módulos de ECOM.
- Los módulos de comunicaciones de datos Los módulos de comunicaciones de datos conectan un DL06 con dispositivos usando DeviceNet o Profibus para conectarse con controladores maestros, así como también un módulo serial D0-DCM.
- El puerto de comunicaciones 1 El DL06 tiene un conector RJ12 de 6 clavijas en el puerto 1 que soporta (como esclavo) protocolos K-sequence, MODBUS RTU o *Direct*NET.
- El puerto de comunicaciones 2 El DL06 tiene un conector de 15 clavijas en el puerto 2 que soporta los protocolos *Direct*NET y MODBUS RTU maestro/esclavo, o el protocolo Ksequence como esclavo (las instrucciones MRX y MWX permiten que usted use direcciones MODBUS nativas en su programa ladder sin necesidad de realizar conversiones octal a decimal). El puerto 2 se puede también usar comunicaciones ASCII IN/OUT.

Colocación de los módulos opcionales

Enumeración de las ranuras

El PLC DL06 tiene cuatro ranuras, que se numeran como sigue:

Configuración de entradas y salidas

Configuración automática de E/S

Los PLCs DL06 detectan automáticamente cualquier módulo instalado de E/S (módulos incluyendo los de especialidad) durante la enrgización, y establecen la configuración correcta y direcciones de E/S. Esto se aplica a los módulos situados en la base local. Para la mayoría de los usos, usted nunca tendrá que cambiar la configuración.

Las direcciones de E/S utilizan enumeración octal, comenzando en X100 y Y100 en la ranura mas a la izquierda. Las direcciones se asignan en grupos de 8, o 16 dependiendo del número de

los puntos para el módulo de E/S. Los módulos discretos de entradas y de salidas se pueden mezclar en cualquier orden. El diagrama siguiente muestra a convención de la enumeración de E/S para un sistema de ejemplo. El programador portátil y DirectSOFT proporcionan las funciones AUX. que permiten que usted configure automáticamente el I/O. Por ejemplo, con el programador, el comando 46 AUX ejecuta una configuración automática, que permite que el PLC examine los módulos instalados y determine la Automático configuración y la dirección. Con DirectSOFT, sería usado el menú PLC Configure I/O.

Ranura 1 Ranura 2 Ranura 3 Ranura 4 8 entradas 16 salidas Y100-Y117 16 entradas X110–X127 8 entradas X100-X107 X130-X137 Ranura 1 Ranura 2 Ranura 3 Ranura 4 8 entradas Manual 8 entradas 16 salidas Y100–Y117 16 entradas X100-X107 X120-X127 X200-X217

Configuración Manual de E/S

Puede que nunca llegue a ser necesario, pero los PLCs DL06 permiten asignar direcciones manuales de E/S para cualquier ranura o ranuras de E/S. Usted puede modificar manualmente una configuración para igualar una enumeración arbitraria de E/S. Por ejemplo, dos módulos de entrada adyacentes pueden comenzar direcciones en el PLC X100 y X200. Use el menú de *Direct*SOFT PLC Configure I/O para configurar la opción de asignar la dirección manual de E/S. En la configuración automática, las direcciones se asignan en los límites de 8 puntos. La configuración manual, sin embargo, asume que todos los módulos son por lo menos 16 puntos, así que usted puede asignar solamente las direcciones que son un múltiplo de 20 (octal). Usted puede todavía usar los módulos de 8 puntos, pero serán asignadas16 direcciones y las ocho direcciones superiores no serán usadas.

 \land

ADVERTENCIA: Si usted configura manualmente una ranura de E/S, la dirección de E/S de otros módulos puede cambiar. Esto es porque los DLO6 no permiten que usted asigne direcciones duplicadas de E/S. Usted debe corregir siempre cualquier error de la configuración de E/S antes de colocar el PLC en modo RUN. Los errores sin corregir pueden causar una operación imprevisible de la máquina, que puede dar lugar a un riesgo de daños corporales o daño al equipo.

Consumo de corriente

El DL06 tiene cuatro ranuras de módulos opcionales. Para determinar si la combinación de módulos seleccionados tendrá suficiente energía, usted necesitará realizar un cálculo del consumo de corriente.

Corriente suministrada

La corriente es suministrada a partir de dos fuentes, de la fuente de alimentación interna de la unidad y si fuera requerido, de una fuente externa (a ser suministrada por el cliente). Los PLCs DL06 alimentados por corriente alterna tienen una fuente de poder interna que proveen una cantidad limitada de corriente en 24VCC. La salida 24VCC se puede utilizar para accionar dispositivos externos.

Para un cálculo de consumo de corriente, comience considerando la corriente suministrada por la unidad. Todas las fuentes de poder internas del PLC DL06 tienen la misma capacidad a 5VCC. Hay un balance entre la corriente a 5VCC y la corriente a 24VCC. La cantidad de corriente 5VCC disponible depende de la cantidad de corriente 24VCC que es utilizada, y la cantidad de corriente 24VCC disponible depende de la cantidad de corriente 5VDC consumida.

Hay algunos aparatos que pueden consumir 5 VCC desde el puerto 1. La capacidad de consumo de la clavija de 5 VCC es del orden de 250 mA.

Consumo requerido por la unidad

Debido a las diversas configuraciones de E/S disponibles en la familia DL06, la corriente consumida por la unidad varía de modelo a modelo. Reste la cantidad de corriente requerida por la unidad de la cantidad de corriente suministrada por la unidad. Asegúrese de restar los valores de corriente en los voltajes de 5VCC y 24VCC.

Consumo requerido por los módulos opcionales

Luego reste la cantidad de corriente requerida por los módulos opcionales que usted está planeando utilizar. Una vez más recuerde de restar los valores de corriente en los voltajes de 5 VCC y 24 VCC. Si su análisis del presupuesto de corriente muestra corriente disponible de sobra, usted debe tener una configuración realizable.

Corriente suministrada por el DLO6					
No. de parte	5 VCC (mA)	24 VCC (mA)			
	<1500 mA	300 mA			
D0-00XX	<2000 mA	200 mA			
DO-O6xx-D 1500 mA ninguna					

Si la carga en 5VCC es menos que 2000 mA, pero más que 1500mA, entonces la corriente disponible de la fuente de poder de 24VCC es 200 mA. Si la carga en 5VCC es menos que 1500 mA, la corriente disponible en 24VCC es 300 mA

Corriente requerida por el DL06					
No. de parte	5 VCC (mA)	24 VCC (mA)			
D0-06AA	800 mA	ninguna			
D0-06AR	900 mA	ninguna			
DO-06DA	800 mA	ninguna			
D0-06DD1	600 mA	280 mA, nota 1			
D0-06DD2	600 mA	ninguna			
D0-06DR	950 mA	ninguna			
D0-06DD1-D	600 mA	280 mA, nota 1			
D0-06DD2-D	600 mA	ninguna			
D0-06DR-D	950 mA	ninguna			

Ejemplo de cálculo del consumo				
Fuente de c	orriente	5VCC (mA)	24VCC (mA)	
D0-06DD1	А	1500 mA	300 mA	
A o B)	В	2000 mA	200 mA	
Corriente ne	ecesaria	5VCC (mA)	24VCC (mA)	
D0-06DD1		600 mA	280 mA, nota 1	
D0-16ND3		35 mA	0	
D0-10TD1		150 mA	0	
D0-08TR		280 mA	0	
F0-4AD2DA-2	2	100 mA	0	
DO-06LCD		50 mA	0	
Total Used		1215 mA	280 mA	
Lo que	А	285 mA	20 mA	
queda	В	785 mA	nota 2	

Corriente consumida por los módulos opcionales del PLC DL06					
No. de parte	5 VDC (mA)	24 VDC (mA)			
D0-07CDR	130 mA	ninguna			
D0-08CDD1	100 mA	ninguna			
D0-08TR	280 mA	ninguna			
DO-10ND3	35 mA	ninguna			
D0-10ND3F	35 mA	ninguna			
D0-10TD1	150 mA	ninguna			
D0-10TD2	150mA	ninguna			
D0-16ND3	35 mA	ninguna			
D0-16TD1	200 mA	ninguna			
D0-16TD2	200mA	ninguna			
DO-DCM	250 mA	ninguna			
D0-DEVNETS	45 mA	ninguna			
F0-04TRS	250 mA	ninguna			
F0-08NA-1	5 mA	ninguna			
F0-04AD-1	50 mA	ninguna			
F0-04AD-2	75 mA	ninguna			
F0-2AD2DA-2	50 mA	30 mA			
F0-4AD2DA-1	100 mA	40 mA			
F0-4AD2DA-2	100 mA	ninguna			
F0-04RTD	70 mA	ninguna			
F0-04THM	30 mA	ninguna			
F0-CP128	150 mA	ninguna			
HO-PSCM	530 mA	ninguna			
HO-ECOM	250 mA	ninguna			
HO-CTRIO	250 mA	ninguna			

NOTA: Vea el manual de opciones DL05/DL06 para datos de los módulos para su proyecto.

.

Corriente consumida por otros aparatos					
No. de parte	5 VCC (mA)	24 VCC (mA)			
DO-06LCD	50 mA	ninguna			
D2-HPP	200 mA	ninguna			
DV1000	150 mA	ninguna			
EA1-S3ML/(-N)	210 mA	ninguna			

NOTA 1: La fuente auxiliar de 24VCC se usa para alimentar el terminal V+ de las salidas de D0-06DD1/-D.
 NOTA 2: Si la fuente auxiliar de 24VCC se usa para alimentar salidas drenadoras, use la opción A de la tabla de arriba.

Configuración de los puertos de comunicación del DL06

Esta sección describe cómo configurar los puertos al establecer una red de PLCs para MODBUS, *Direct*NET o ASCII. Esto permitirá que conecte el sistema del PLC DL06 directamente a redes.

Los dispositivos maestros MODBUS en la red deben ser capaces de generar comandos MODBUS de lectura o de escritura de los datos. Para detalles en el protocolo de MODBUS, vea a la guía de referencia del protocolo de Gould MODBUS (P1-MBUS-300 Rev B). Si una versión más reciente está disponible, compruebe con su distribuidor de MODBUS antes de pedir la documentación.

Para más detalles en *Direct*NET, pida el manual *Direct*NET, artículo DA-DNET-M o descárguelo del sitio de Internet de AUTOMATION DIRECT. Vea también el apéndice K.

Nota: Para más información sobre el protocolo de MODBUS vea el sitio de Internet del grupo Schneider en: www.schneiderautomation.com. Para más información sobre el protocolo de DirectNET, baje el manual sin costo desde nuestro sitio de Internet: www.automationdirect.com. Seleccione Manual/Doc>Online manuals>Misc.>DA-DNET-M.

		Comunicaciones Puerto 1			Com	unicaciones Puerto 2
Com	1 Se ope	conecta a HPP, DirectSOFT32, interfaces de erador, etc.	Com	2 S 0	e conecta perador,	a a HPP, DirectSOFT32, interfaces de etc.
	6 c Tas	lavijas, RS232C sa de communicación(baud): 9600 (fija)		1 R	5-clavijas S232C, F	s, puerto de funciones múltiples, RS422, RS485
	Par	ridad: odd (valor original de fábrica)		Ta 2	asa de co 400, 480	omunicación (baud): 300, 600, 1200, 10, 9600, 19200, 38400
	8 h	nits de datos		Р	aridad: o	dd (valor original), even, 0 (nada)
	1 b	bit start. 1 bit stop		D	irección	de la estación: 1 (valor original)
	Así	íncrono, half-duplex. DTE		8	bits de c	latos
	Pro	ntocolo: (Seleccionable automáticamente)		1	bit start,	, 1 bit stop
	K-s	sequence (solamente esclavo),		A	síncrono	, half-duplex, DTE
	Dir	ectNET (solamente esclavo),		P	rotocolos	s: (selección automática) K-sequence
	IVIC			(S N	solament 10DBUS	e esclavo), Directive I (maestro/esclavo), (maestro/esclavo), non-
				S	equence/	print/ASCII in/out
Des	cripo	ciones de clavijas Puerto 1			Descrip	ciones de clavijas Puerto 2
1	OV	Conexión (-)(GND)		1	5V	Conexión (+)
2		CONEXION (+) Regibe dates (RS 222C)		2	TXD	Transmite datos (RS-232C)
3		Transmite dates (PS 2220)		3	RXD	Recibe datos (RS-232C)
4 5	51	Conovién (1)		4	RTS	Ready to send
6	01/	Conevión (-)(CND)		5		Clear to send
0	00			7	RXD-	$\frac{\text{Recibe datos (-) (RS-422/485)}}{\text{Copavián (-) (GND)}}$
(21 X23 N.C				8	0V	Conexión (-) (GND)
X22 N.C.				9	TXD+	Transmite datos (+) (RS-422/485)
		PORT1 PORT2 RUN STOP		10	TXD-	Transmite datos (-) (RS-422/485)
				11	RTS+	Ready to send (+) (RS-422/485)
				12	RTS-	Ready to send (-) (RS-422/485)
				13	KXD+	$\frac{\text{Recibe datos (+) (RS-422/485)}}{(1000 \text{ Gase to cond (+) (RS-422/485)})}$
1				14		Clear to send (-) (RS-422/485)

Manual del PLC DL06, 2a. edición en español, 6/07

4-7

Seleccionando una especificación de red

El puerto de funcionamiento múltiple del PLC DL06 le da la opción de usar las especificaciones RS-232C, RS-422, o RS-485.Primero, determine si la red será un tipo de dos conductores de RS-232C, un tipo de 4 conductores RS-422, o un tipo de 2 o 4 conductores RS-485.

La especificación RS-232C es simple de implementar para redes de distancias relativamente cortas (15 metros máximo) y la comunicación debe estar solamente entre dos dispositivos. RS-422 y RS-485 son aplicables para redes que cubren largas distancias (1000 metros máximo) y para redes de varios nodos.

Nota: Se nece

Nota: Se necesitan resistencias de terminación en ambos finales de la red RS-422 y RS-485. Es necesario seleccionar resistencias de valor igual a la impedancia del cable (entre 100 y 500 ohm).

Red del tipo RS-232

Manual del PLC DL06, 2a. edición en español, 6/07

4_8

Configuración de los puertos para comunicación

El puerto 1 tiene una configuración fija. El puerto 2 es programado por medio de un cuadro de diálogo en el menú de *Direct*SOFT. Alternativamente, es posible programar la configuración del puerto 2 con diagrama ladder. Esto puede ser útil en el caso que se quiera mantener la configuración cada vez que el PLC se encienda, y es independiente de entrar la configuración con el menú de *Direct*SOFT.

El PLC DL06 usa las palabras reservadas V7655, V7656 y V7657 y estas son la definiciones que deben ser colocadas en esas palabras (Otras CPUs usan otras memorias reservadas):

La **palabra V7655** está formada de los siguientes grupos de bits: **0**yyy

0TTT mmmm mxxx

yyy = El atraso de RTS ON TTT = Communication time out mmmmm = tipo de protocolo xxx = TRS OFF delay

US.				
v	RST ON delay	TimeOut	Protocolo	RTS OFF delay
	ууу	TTT	mmmmm	ХХХ
	000= 0 ms	000 = 100 %	10000 = K-sequence	000= 0 ms
	001 = 2 ms	001 = 120 %	01000 = DirectNet	001 = 2 ms
	010 = 5 ms	010 = 150 %	00100 = MODBUS	010 = 5 ms
	011 = 10 ms	011 = 200 %	00010 = Non sequence	011 = 10 ms
	100 = 20 ms	100 = 500 %		100 = 20 ms
	101 = 50 ms	101 = 1000 %		101 = 50 ms
	110 = 10 ms	110 = 2000 %		110 = 10 ms
	111 = 500 ms	111 = 5000 %		111 = 500 ms

La palabra V7656 está formada de los siguientes grupos de bits: pps0 ebbb xaaa aaaa

pp = Parity s = Stop bits	Paridad	Bits	Supresión de eco	Tasa de baud	Modo protocolo	Dirección del nodo
e = Supresión de eco	hh	3	υ	uuu	X	aaaaaa
bb= Tasa de Baud	00= none	0 = 1 bit	0 = RS-232/422	000= 300	0 = hexadec	1 -90= k-sequence
x = Modo del proto-	10 = Odd	1 = 2 bits	1 = 485	001 = 600	1 = ASCII	1-90 DirectNET
colo	11 = Even			010 = 1200		1-247 MODBUS
aaaaaaa = Dirección				011 = 2400		
del nodo				100 = 4800		
				101 = 9600		
				110 = 19200		
				111 = 38400		

La palabra V7657 para el protocolo non sequence: está formada de los siguientes grupos de bits: pps0 ebbb aaaa aaaa

pp = Parity s = Stop bits	Paridad pp	Bits S	Supresión de eco e	Tasa de baud bbb	Modo protocolo aaaaaa
e = Supresión de	00= none	0=1 bit	0=RS-232/422	000= 300	01110000 = No flow control
eco	10 = Odd	1=2 bits	1=485	001 = 600	01110001 = Xon/Xoff flow control
bbb = Tasa de Baud	11 = Even			010 = 1200	01110010 = RTS flow control
aaaaaaaa= Dirección				011 = 2400	01110011 = Xon/Xof y RTS flow control
del esclavo				100 = 4800	
				101 = 9600	
				110 = 19200	
				111 = 38400	

La palabra V7657: La CPU aceptará los valores de configuración cuando se escribe un valor de "configuración completa" en esta memoria. Para el DL06 es K0500. Cuando la CPU verifica el valor , cambiará el número "5" por una "A" si los valores de configuración son aceptados o una "E" si hay un error.

Adicionalmente, para el protocolo Non-sequence la palabra V7650 es una memoria de almacenamiento temporal de datos ASCII que llegan al PLC. Coloque este parámetro referido a una localización no usada.

Configuración del puerto como MODBUS RTU

- En DirectSOFT, haga clic en el menu PLC, luego Setup, luego "Set up Sec. Comm Port".
- **Port:** De la lista del número del puerto, escoja "Port 2".
- **Protocol**: Haga clic en el cuadro a la izquierda de "MODBUS" (use AUX 56 en el HPP, y seleccione "MBUS"), y luego verá el cuadro de diálogo abajo:
- Timeout: El período que el puerto esperará después que envíe un mensaje para obtener una respuesta antes de detectar un error.
- RTS ON / OFF Delay Time: Especifica el tiempo que espera el PLC DL06 para mandar datos después que la señal TRS se ha hecho ON. Especifica el tiempo que espera el PLC DL06 después de mandar datos para hacer OFF la señal TRS. *Cuando se usa el DL06 en*

Setup Communication Ports Port: Port 2	Close
Protocol: CK-Sequence	Help
Time-out: 800 ms	
RTS on delay time: 0 ms	
RTS off delay time: 0 ms	
Station Number: 1	
Baud rate: 38400	Echo Suppression
Stop bits: 1	RS-232C (2-wire)
Parity: Odd	 RS-485 (2-wire)
Port 2: 15 Pin	

una rede multinodo, el tiempo de demora RTS ON debe ser colocado a por lo menos 5 ms y el tiempo de Demora RST OFF debe ser colocado a por lo menos 2ms. Si usted encuentra problemas, el tiempo se puede aumentar.

- Station Number(Número de la estación): Para hacer el puerto de la CPU un maestro de MODBUS, escoja "1". El rango posible para números de esclavo de MODBUS es de 1 a 247, pero el DL06 solo permite esclavos 1 a 99. Cada esclavo debe tener un número único. Durante la energización el puerto es automáticamente un esclavo, a menos que y hasta que el DL06 ejecute las instrucciones de la red de la lógica ladder que usan el puerto como un maestro. Después, el puerto vuelve al modo esclavo hasta que la lógica ladder use el puerto otra vez.
- Baud Rate(Velocidad en Baud): Las tasas disponibles de baud incluyen 300, 600, 1200, 2400, 4800, 9600, 19200, y 38400 Baud. Escoja una tasa más alta de baud inicialmente, y baje el valor si experimenta errores de datos o problemas de ruido en la red. Importante: Usted debe configurar las tasas de Baud de todos aparatos en la red al mismo valor.
- Stop Bits(Bits de Parada): Escoja 1 o 2 bits de parada para el uso en el protocolo.
- Parity: Escoja ninguno, par o impar (0 (nada), Odd, Even) para verificar errores.
- •Echo Suppression: Seleccione el botón de radio apropiado basado en la configuración del cableado usado en el puerto 2.

Luego haga clic en el botón indicado para enviar la configuración del puerto a la CPU y haga click en CLOSE.

Configuración del puerto como DirectNET

En DirectSOFT, escoja el menú PLC, luego Setup, luego "Setup Second. Comm Port".

- Port: De la lista de números de puertos, escoja Setup Communication Ports
- **Protocol**: haga clic en el cuadro a la izquierda de "DirectNET"(use AUX 56 en el HPP, luego seleccione "DNET"), y luego ud. verá el cuadro de diálogo de la figura abajo:
- **Timeout**: El período que el puerto esperará después que envíe un mensaje para obtener una respuesta antes de detectar un error.
- RTS ON / OFF Delay Time: El RTS ON delay time especifica el tiempo que espera el PLC DL06 para mandar datos después que la señal TRS se ha hecho ON. El RTS OFF Delay Time Especifica el tiempo que espera el PLC DL06 después de mandar datos para hacer OFF la señal TRS. El tiempo de atraso RTS ON debe ser colocado a por lo menos 5 ms y el

tiempo de Demora RST OFF debe ser colocado a por lo menos 2ms. Si usted encuentra problemas, el tiempo se puede aumentar.

- Station Number (Número de esclavo): Para hacer el puerto de la CPU un maestro de *Direct*NET, escoja "1". El rango posible para números de esclavo de *Direct*NET es de 1 a 90. Cada esclavo debe tener un número único. Durante la energización el puerto es automáticamente un esclavo, a menos que y hasta que el DL06 ejecute las instrucciones de la red de la lógica ladder que usan el puerto como un maestro. Después, el puerto vuelve al modo esclavo hasta que la lógica ladder use el puerto otra vez.
- Baud Rate (La velocidad en Baud): Las tasas disponibles de baud incluyen 300, 600, 1200, 2400, 4800, 9600, 19200, y 38400 Baud. Escoja una tasa más alta de baud inicialmente, y baje el valor si experimenta errores de datos o problemas de ruido en la red. Importante: Usted debe configurar las tasas de Baud de todos aparatos en la red al mismo valor.
- Stop Bits: Escoja 1 o 2 bits de parada para el uso en el protocolo.
- Parity: Escoja ninguno, par, o impar (0 (nada , Odd o Even respectivamente) para verificar errores.
- Format: (Formato) : escoja entre formatos hexadecimal o ASCII

Luego haga clic el botón indicado para mandar la configuración del Puerto a la CPU, y luego haga clic en CLOSE.

Configuración del puerto como Non-Sequence (ASCII)

Configurando el puerto 2 en el DL06 para Non-Sequence permite que la CPU use el puerto 2 para leer o escribir secuencias naturales ASCII usando las instrucciones ASCII. Vea las instrucciones ASCII In/Out y la instrucción PRINT en el capítulo 5.

En *Direct*SOFT, escoja el menú PLC, luego SETUP y luego "Set Up Sec Comm Port" y luego verá el cuadro de diálogo de la figura de abajo.

- Port: De la lista de números de puertos escoja "Port 2".
- •Protocol: Haga clic en el cuadro de verificación a la izquierda de "Non-Sequence".
- •Timeout: El período que el puerto esperará después que envíe un mensaje para obtener una respuesta antes de detectar un error.
- •RTS On Delay Time: tiempo que espera el PLC para mandar datos después que la señal TRS se ha hecho ON.
- •RTS Off Delay Time: tiempo que espera el PLC DL06 después de mandar datos para hacer OFF la señal TRS.
- •Data Bits: Seleccione 7 o 8 bits y hágalo igual a los bits de datos especificados para los aparatos conectados.

Setup Communication Ports	×
Setup Communication Ports Port: Port 2 Protocot: K-Sequence DirectNET MODBUS Von-Sequence Remote I/0 Time-out: 800 ms RTS of delay time: 0 ms RTS off delay time: 0 ms RTS off delay time: 0 ms RTS off delay time: 1 Parity: 0 dd Parity: 0 dd Memory Address: \vee V10000	Close Close Help Echo Suppression © RS-422/485 (4-wire) RS-232C (2-wire) © RS-485 (2-wire) © XON/XOFF flow control RTS flow control
Port 2: 15 Pin	

- •Baud Rate: Las tasas disponibles de baud incluyen 300, 600, 1200, 2400, 4800, 9600, 19200, y 38400 Baud. Escoja una tasa más alta de baud inicialmente, y baje el valor si experimenta errores de datos o problemas de ruido en la red. Importante: *Usted debe configurar las tasas de Baud de todos aparatos en la red al mismo valor*.
- •Stop Bits: Escoja 1 o 2 bits de parada que debe ser los mismos que los de los aparatos conectados.
- •Parity: Escoja paridad none, even, o odd para verificación de error. Asegúrese de hacer igual la paridad especificada en los aparatos conectados.
- •Echo Suppression: Seleccione el botón de radio adecuado basado en la configuración usada en el; puerto 2 (RS-232C, RS-422 o RS-485).
- •Xon/Xoff Flow controls: Escoja esta selección si Ud. tiene el puerto 2 conectado para el control de flujo con hardware (Xon/Xoff) con las señales RTS y CTS conectada entre los dispositivos.
- •RTS Flow controls: Escoja esta selección si ud. tiene la señal RTS del puerto 2 cableada entre los aparatos.
- •Memory address: Escoja una dirección de memoria para usar como buffer para almacenamiento de datos ASCII.

Luego haga clic en el botón indicado para enviar la configuración del puerto a la CPU y haga clic en CLOSE.

Comunicación con K-Sequence

El protocolo K-Sequence se puede usar para comunicación con *DirectS*OFT, una interface de operador o cualquier otro dispositivo que puedan ser un maestro con K-Sequence. El PLC DL06 puede ser un esclavo K-Sequence en el puerto 1 o el puerto 2. El PLC DL06 no puede ser un maestro K-Sequence.

Para utilizar el puerto 2 para comunicaciones K-Sequence usted primero necesita configurar el puerto usando *Direct*SOFT o lógica ladder según lo descrito previamente.

Comunicación con DirectNET

La red es controlada por una estación maestra que da órdenes de intercambio de datos a estaciones individuales de esclavo en una red serial. (No se puede transmitir "simultáneamente" un mensaje a todos los esclavos). Las órdenes se pueden usar para enviar los datos a las estaciones esclavas o enviar los datos desde las estaciones esclavas. Las estaciones esclavas sólo responden a pedidos de la estación maestra y no pueden iniciar comunicaciones.

Esta red usa el protocolo de comunicaciones *Direct*NET, pero usted no tiene que entender el protocolo para construir las configuraciones de redes más comunes.

Para más detalles en relación con *Direct*NET, ordene el manual de *Direct*NET desde AutomationDirect. El número de parte DA-DNET-M o también puede bajarlo desde el sitio de Internet de AUTOMATIONDIRECT www.automationdirect.com, en forma gratuita. Vea también otros conceptos y un ejemplo de comunicaciones en el apéndice K.

El protocolo *Direct*NET se puede usar para comunicarse a otro PLC o a otros dispositivos que puedan usar el protocolo *Direct*NET. El PLC DL06 puede ser usado como maestro en el puerto 2 o como esclavo usando el puerto 1 o el puerto 2 o aún el módulo D0-DCM.

Muchos paneles de operador, incuso algunos de los que vende AUTOMATIONDIRECT, se pueden usar como la estación maestra para comunicarse con uno o más esclavos. Un panel de operador debe tener un driver que permite el protocolo *Direct*NET. También es posible usar un PC con el driver adecuado. De hecho la comunicación de *Direct*SOFT para las CPUs D3-330 y D3-340 es *Direct*NET. Está disponible la descripción del protocolo *Direct*NET, en el manual nombrado anteriormente, para poder crear un driver e incluso tiene ejemplos en BASIC para poder generar comandos desde un PC.

Comunicación con MODBUS RTU

Se puede usar el protocolo MODBUS RTU para comunicación con cualquier dispositivo que utilice el protocolo MODBUS RTU. El protocolo es muy común y es probablemente la cosa más cercana a un protocolo estándar "industrial" en existencia. El PLC DL06 puede ser un esclavo de MODBUS RTU en el puerto 1 o el puerto 2, y puede ser un maestro MODBUS RTU en el puerto 2. El estándar RS 485 se puede utilizar solamente en el puerto 2 para el protocolo MODBUS RTU.

La forma de conectar el maestro o los esclavos es muy similar a la forma hecha con *Direct*NET en el caso de RS-232 or RS-422. Vea ejemplos en el apéndice K.

Comunicación con ASCII

Se puede usar el protocolo Non-sequence para leer y esribir datos ASCII. Vaea la sección del capítulo 5 relacionada con las intruccciones ASCII.

Operación de un esclavo em MODBUS RTU

Esta sección describe cómo otros dispositivos en una red pueden comunicarse con un puerto del PLC DL06 que usted ha configurado como un esclavo MODBUS. Un anfitrión de MODBUS debe utilizar el protocolo MODBUS RTU para comunicarse con el DL06 como esclavo. El software del anfitrión debe enviar un código de una función de MODBUS y dirección de MODBUS para especificar una memoria del PLC que el DL06 comprenda. No se requiere ninguna lógica ladder en el PLC para permitir usar el esclavo de MODBUS.

Códigos de función MODBUS en el PLC

El código de función MODBUS determina si la tranferencia es escritura o lectura y si va a transferir un bit de datos o un grupo de ellos. El PLC DL06 permite usar los códigos de función de MODBUS descritos debajo.

Códigos MODBUS	Función	Tipos de datos disponibles
01	Lea un grupo de bobinas	Y, CR, T, CT
02	Lea un grupo de entradas	X, SP
05	Active / desactive una bobina solamente	Y, CR, T, CT
15	Active / desactive un grupo de bobinas	CR, T, CT
03, 04	Lea un valor desde una o más memorias	V
06	Escriba un valor a una memoria	V
16	Escriba un valor a una o más memorias	V

El sistema MODBUS usa convenciones de direcciones diferentes que las direcciones de los PLCs *Direct*LOGIC. Con *Direct*NET la convención de dirección es única. Otros PLCs *Direct*LOGIC deben hacer un cruzamiento a las direcciones de MODBUS de acuerdo a la tabla ejemplo a continuación.

	0	1	2	3	4	5	6	- 7	10	11	12	13	14	15	16	17	Memoria V
XD	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	40400
X20	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078	2079	40401
X40	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	40402
X60	2096	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	40403
X100	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	40404
X120	2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	40405
X140	2144	2145	2146	2147	2148	2149	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	40406

Determinando la dirección de MODBUS

Hay dos formas típicas en que la mayoría de las convenciones de software anfitrión le p[ermite especificar una dirección de memoria de un PLC. Estas son:

- Especificando el tipo de datos y la dirección de MODBUS
- Especificando la dirección de MODBUS solamente.

Si el software anfitrión requiere el tipo de datos y dirección

Muchos paquetes de software anfitrión permiten que usted especifique el tipo de datos de MODBUS y la dirección de MODBUS que corresponde a la dirección de memoria del PLC. Éste es el método más fácil, pero no todos los paquetes permiten que usted lo haga de esta manera.

La ecuación usada para calcular la dirección depende del tipo de datos del PLC que usted está utilizando. Los tipos de memoria del PLC están divididos en dos categorías para este propósito.

- Discreto X, SP, Y, CR, S, T, C (contactos)
- Palabra V, valor corriente del temporizador, valor corriente del contador.

En cualquier caso, usted convierte básicamente la dirección octal del PLC a decimal y suma la dirección apropiada de MODBUS (si es requerido). La tabla abajo muestra la ecuación exacta usada para cada grupo de datos.

Tipo de memoria del DLO6	Cantidad (Decimal)	Rango del PLC (Octal)	Rango direcciones MODBUS (Decimal)	Tipo de datos MODBUS
Para tipos de datos discretos	Convierta la	dirección del PLC a	decimal + inicio del ran	go + tipo de datos
Entradas (X)	512	X0 – X777	2048 – 2559	Entrada
Relevadores especiales(SP)	512	SP0 – SP777	3072 - 3583	Entrada
salidas (Y)	512	Y0 – Y777	2048 – 2559	Bobina
Relevadores de control (CR)	1024	CO – C1777	3072 - 4095	Bobina
Contactos de temporizador (T)	256	T0 – T377	6144 – 6399	Bobina
Contactos de contador (CT)	128	CT0 – CT177	6400 - 6527	Bobina
Bits de estado de etapas(S)	1024	S0 – S1777	5120 - 6143	Bobina
Para tipos de datos de pa	labras (convierta la direcció	n del PLC a decimal + ti	po de datos
Valor corriente de T (V)	256	V0 – V377	0 – 255	Entrada
Valor corriente de CT (V)	128	V1000 – V1177	512 – 639	Input register
Memoria V. datos usuario (V)	3200	V1200 – V7377	640 - 3839	Holding Register
	4096	V10000 - V17777	4096 - 8191	Holding Register
Memoria V, no-volátil (V)	128	V7400 – V7577	3840 - 3967	Holding Register

4

Manual del PLC DL06, 2a. edición en español, 6/07

Los ejemplos siguientes muestran cómo generar la dirección y el tipo de datos MODBUS para los anfitriones que necesitan este formato.

Ejemplo 1: V2100

Encuentre la dirección de MODBUS para la dirección V2100.

- 1. Encuentre la memoria V en la tabla.
- 2. Convierta V2100 a decimal (1088).
- 3. Use el tipo de datos de MODBUS de la tabla.

	3200	V1200 - V7377	040 - 3039	HUIUIIIY NEYISLEI
Datos de memoria (V)	3200	V1200 _ V7377	640 - 3830	Holding Register

Ejemplo 2: Y20

Encuentre la dirección de MODBUS para la salida Y20.

- 1. Encuentre las salidas Y en la tabla.
- 2. Convierta Y20 a decimal (16).
- 3. Sume la dirección inicial del rango (2048).

4. Use el tipo de dato:				
Salidas (V)	256	Y0 – Y377	2048 - 2303	Bobina

Ejemplo 3: Valor corriente de T10

Encuentre la dirección de MODBUS para obtener el valor corriente del temporizador T10.

1. Encuentre valores corrientes de temporizador en la tabla.

- 2. Convierta T10 a decimal (8).
- 3. Use el tipo de datos de MODBUS de la tabla.

Valores corrientes de T (V)	128	V0 – V177	0 - 127	Memoria de entrada

Ejemplo 4: Relevador de control C54

Encuentre la dirección de MODBUS para el relais de control C54.

- 1. Encuentre relevadores de control en la tabla.
- 2. Convierta C54 a decimal (44).
- 3. Sume la dirección inicial del rango (3072).
- 4. Use el tipo de datos de MODBUS de la tabla.

Relevadores de control (CR)	512	C0 – C77	3072 – 3583	Bobina

Memoria de entrada 8

Holding Reg 1088

Bobina 2064

Bobina 3116

Si su software de anfitrión de MODBUS SOLAMENTE necesita una dirección

Algunos software anfitriones no permiten que se especifique el tipo y la dirección de datos de MODBUS. En ese caso, usted debe especificar una dirección solamente. Este método requiere otro paso determinar la dirección, pero sigue siendo bastante simple. Básicamente MODBUS también separa los tipos de datos por los rangos de dirección también. Esto significa que solamente una dirección puede describir realmente el tipo de datos y de dirección. Esto se refiere a menudo como "sumando el offset".Una cosa importante aquí es que dos modos de dirección diferentes pueden estar disponibles en su paquete de software de anfitrión. Éstos son:

- Modo 484
- Modo 584/984

Recomendamos que utilice el modo de dirección de 584/984 si su software anfitrión le permite elejir. Esto es, porque el modo de 584/984 permite el acceso a una cantidad más grande de direcciones de memoria dentro de cada tipo de datos. Si su software apoya solamente el modo 484, entonces puede haber algunas posiciones de memoria del PLC que serán inasequibles. La ecuación real usada para calcular la dirección depende del tipo de datos del PLC que usted está utilizando. Los tipos de l memoria del PLC están divididos en dos categorías para este propósito.

- Discretas X, SP, Y, CR, S, T (contactos), CT (contactos)
- Palabra V, valor corriente del temporizador, valor corriente del contador,

En cualquier caso, usted convierte básicamente la dirección octal del PLC a decimal y suma las direcciones apropiadas de MODBUS (de acuerdo a lo requerido). La tabla de abajo muestra la ecuación exacta usada para cada grupo de datos.

Tipo de de datos discretos								
Tipo de memoria del DLO6	Rango del PLC (Octal)	(Modo 484)	Dirección (Modo 584/984)	Tipo datos MODBUS				
Entradas globalos(GV)	GX0-GX1746	1001 - 1999	10001 - 10999	Input				
	GX1747-GX3777		11000 - 12048	Input				
Entradas (X)	X0 – X1777		12049 - 13072	Input				
Relevadores especiales (SP)	SP0 – SP777		13073 - 13584	Input				
Salidas globales (GY)	GY0 - GY3777	1 - 2048	1 - 2048	Output				
Salidas (Y)	Y0 – Y1777	2049 - 3072	2049 - 3072	Output				
Relevadores de control (CR)	C0 – C3777	3073 - 5120	3073 - 5120	Output				
Contactos de temporizadores (T)	T0 – T377	6145 - 6400	6145 - 6400	Output				
Contactos de contadores (CT)	CT0 – CT377	6401 - 6656	6401 - 6656	Output				
Bits de estado de etapas (S)	S0 – S1777	5121 - 6144	5121 - 6144	Output				

Tipos de de datos de palabra								
Memorias	Rango del PLC (Octal)	Input/Holding (484 Mode)*	Input/Holding (584/984 Mode)*					
Memoria V (Temporizadores)	V0 - V377	3001/4001	30001/40001					
Memoria V (Contadores)	V1000 - V1177	3513/4513	30513/40513					
	V1200 - V1377	3641/4641	30641/40641					
	V1400 - V1746	3769/4769	30769/40769					
Memoria V (Palabras de datos)	V1747 - V1777		31000/41000					
	V2000 - V7377		41025					
	V10000 - V17777		44097					

* MODBUS: Función 04

Los PLCs DL05/06 y las CPUs DL250-1/260, DL350 y DL450 permiten usar la función 04, lea el registro de entrada (dirección 30001). Para utilizar la función 04, coloque el número "4" en la posición más significativa (4xxx), cuando no usa la instrucción MRX. Se deben entrar cuatro dígitos para que la intrucción trabaje correctamente con este modo.

La constante posible máxima es 4128. Esto es debido al número máximo de 128 bytes que puede permitir la instrucción RX/WX. El valor de 4 en la posición más significativa de la palabra hará que la instrucción RX use la función 04 (rango 30001).

1. Vea el manual de usuario del PLC si es que no usa el PLC DL06, para el tamaño correcto de la memoria de su PLC. Algunas de las direcciones mostradas arriba puede ser que no pertenezcan a su CPU particular.

2. Hay un programa automatizado en EXCEL con la conversión de dirección de MODBUS para PLCs **Direct**LOGIC y es el archivo **modbus_conversion.xls** que se encuentra en el sitio de Internet <u>www.automationdirect.com</u> y que puede ser bajado gratuitamente. (Referencia : Apoyo técnico>Página inicial de apoyo técnico>Notas técnicas y de aplicaciones > Communications> AN-MISC-010)

V2100 = 1088 decimal

1088 + 40001 =

Dir. PLC (Dec.) + Direc. inicial + modo

Y20 = 16 decimal

16 + 2048 + 1 =

41089

2065

Ejemplo 1: V2100 con modo 584/984

Encuentre la dirección MODBUS para la dirección V2100 Dirección PLC(Dec) + modo

- 1. Encuentre la memoria en la tabla
- 2. Convierta V2100 a decimal (1088).
- 3. Sume la dirección inicial MODBUS para el modo (40001).

Para tipo de datos de palabr	Dirección de	+	Dirección del modo			
Valores corrientes de T (V)	128	V0 – V177	0 – 127	3001	30001	Input Register
Valores corirentes de CT(V)	128	V1200 – V7377	512 - 639	3001	30001	Input Register
Memoria, datos de usuario (V)	1024	V2000 – V3777	1024 – 2047	4001	40001	Holding Register

Ejemplo 2:Y20 con modo 584/984

Encuentre la dirección MODBUS para la salida Y20.

- 1. Encuentre las salidas Y en la tabla.
- 2. Convierta Y20 a decimal (16).
- 3. Sume la dirección inicial para el rango (2048).
- 4. Sume la dirección MODBUS para el modo (1).

Salidas (Y)	320	Y0 - Y477	2048 - 2367	1	1	Bobina
Relevadores de control (CR)	256	CO - C377	3072 - 3551	1	1	Bobina
Contactos de tempor. (T)	128	T0 - T177	6144 - 6271	1	1	Bobina

Ejemplo 3: Valor corriente de T10 con el modo 484

Encuentre la dirección MODBUS para obtener el valor corriente de T10.

Dirección del PLC (Dec.) + Modo TA10 = 8 decimal

- 1. Encuentre el valor corriente en la tabla.
- 2. Convierta T10 a decimal (8).
- 3. Sume la dirección inicial MODBUS para el modo (3001).

Para tipos de datos de palab	dirección dePl	LC(Dec.) +	dirección del modo			
Valores corrientes de T (V) 128		V0 – V177	0 – 127	3001	30001	Input Register
Valores corirentes de CT(V)	128	V1200 – V7377	512 - 639	3001	30001	Input Register
Memoria, datos de usuario (V)	1024	V2000 – V3777	1024 – 2047	4001	40001	Holding Register

Ejemplo 4: C54 con el modo 584/984

Encuentre la dirección MODBUS para C54. Dirección del PLC (Dec.)+Dir. inicial+ modo

- 1. Encuentre relevadores de control en la tabla.
- C54 = 44 decimal
- 2. Convierta C54 a decimal (44).
- 44 + 3072 + 1 =
- 3. Sume la dirección inicial para el rango (3072).
- 4. Sume la dirección MODBUS para el modo (1).

Salidas (Y)	320	Y0 - Y477	2048 - 2367	1	1	Bobina
Relevadores de control (CR)	256	CO - C377	3072 - 3551	1	1	Bobina
Contactos de tempor. (T)	128	T0 - T177	6144 - 6271	1	1	Bobina

8 + 3001 = **3009**

3117

Operación del maestro en una red MODBUS RTU

Esta sección describe cómo el PLC DL06 puede comunicarse en una red de MODBUS como maestro (también es válido para *Direct*NET). Para las redes de MODBUS, use el protocolo MODBUS RTU, que se debe interpretar por todos los esclavos en la red. MODBUS y *Direct*Net son redes de un maestro y múltiples esclavos. El maestro es el único miembro de la red que puede iniciar peticiones en la red. Esta sección le enseña cómo diseñar la lógica requerida para operación del maestro.

Al usar el PLC DL06 como maestro, se usan instrucciones simples para iniciar las peticiones. La instrucción WX inicia las operaciones de escritura a la red y RX inicia operaciones de lectura de la red. Antes de ejecutar WX o RX, necesitamos cargar los datos relacionados con la operación de lectura o escritura en el stack del acumulador. Cuando se ejecuta la instrucción WX o RX, usa la información en el stack combinado con datos en la instrucción para definir totalmente la tarea, que va al puerto correspondiente.

4–20

Paso 1: Identifique el numero del puerto maestro y el número de cada esclavo

La primera instrucción LD identifica el número del puerto maestro en la red DL06 y la dirección del esclavo con el cual se harán las transferencias de datos. Esta instrucción puede direccionar hasta 99 esclavos en MODBUS (o 90 esclavos de *Direct*NET).

El formato de palabra se muestra a la derecha. El "F2" en el byte superior indica el uso del puerto correcto del PLC DL06, que es el puerto 2. Recuerde que el puerto 2 es el único puerto en el PLC DL06 que puede ser maestro.

El byte más bajo contiene el número de la dirección del esclavo en BCD (01 a 99).

Paso 2: Cargue el no. de bytes a transferir:

La segunda instrucción LD determina el número de bytes que se transferirán entre el maestro y el esclavo en la instrucción siguiente WX o RX. El valor a ser cargado está en formato BCD, de 1 a 128 bytes.

El número de bytes especificados depende también del tipo de datos que quiere obtener. Por ejemplo, los puntos de entrada DL06 pueden obtenerse por memorias V o como localizaciones de entrada X. Sin embargo, si usted sólo quiere X0 - X27, usted tendrá que usar el tipo de datos de entrada X porque las ubicaciones de memoria V pueden ser obtenidas en incrementos de 2 bytes.

La siguiente tabla muestra los rangos de bytes para los varios tipos de productos *Direct*LOGICTM.

Memoria DL05 / 06 / 205 / 350 / 405	Bits por unidad	Bytes
Memoria V del valor corriente de temporizador o contador	16 16	22
Entradas (X, SP)	8	1
salidas (Y, C, estapas, bits de T/CT)	8	1
Memoria Scratch Pad	8	1
Estado de diagnóstico	8	1

Memoria DL330 / 340	Bits por unidad	Bytes
Memorias de datos Acumulador de T/CT	8 16	1 2
E/S, relevadores internos , bits de shift register, bits de T/CT, bits de etapas	1	1
Memoria Scratch Pad	8	1
Estado de diagnóstico (5 palabras R/W)	16	10

Paso 3: Especifique la memoria del maestro

La tercera instrucción en el programa RX o WX es una instrucción LDA. Su propósito es cargar la dirección inicial del área de memoria a ser transferida. Es entrado como un número octal y la instrucción LDA la convierte a hexadecimal y coloca el resultado en el acumulador.

Para una instrucción WX, la CPU DL06 manda el número de bytes previamente especificado al área de memoria en la dirección inicial especificada en la instrucción LDA.

Para una instrucción RX, la CPU DL06 lee el número de bytes previamente especificados del esclavo, colocando los datos recibidos en el área de memoria en la dirección inicial especificada en la instrucción LDA.

NOTA: Ya que las palabras de memoria V son siempre de 16 bits, no siempre se puede usar la palabra entera. Por ejemplo, si sólo se especifica 3 bytes y se lee las salidas Y del esclavo, sólo se obtiene 24 bits de datos. En este caso, sólo los 8 bits menos significativos de la última dirección de palabra se modificarán. Los restantes 8 bits no son afectados.

Paso 4: Especifique la memoria del esclavo

La última instrucción en nuestro programa es la SP116 instrucción WX o RX. Use WX para escribir al esclavo, y RX para leer desde el esclavo. Todas las cuatro instrucciones se muestran a la derecha. En la última instrucción, usted debe especificar la dirección inicial y un tipo válido de datos para el esclavo.

- Esclavos de *Direct*NET especifique la misma dirección en la instrucción WX y RX como la dirección nativa del esclavo.
- Esclavos MODBUS DL405, DL205, o DL06 especifique la misma dirección en la instrucción WX y RX como la dirección nativa del esclavo.
- Esclavos MODBUS 305 use la siguiente tabla para convertir direcciones DL305 a direcciones MODBUS.

Correspondencia de la memoria de las CPUs DL305 a MODBUS (excluyendo la CPU 350					
Tipo de memoria del PLC	Dirección base del PLC	Dirección base MODBUS	Tipo de memoria PLC	Dirección base del PLC	Dirección base MODBUS
Valores corrientes de TMR/CNT	R600	V0	Bits de estado de TMR/CNT	CT600	GY600
Puntos de E/S	10 000	GY0	Relev. control	CR160	GY160
Registros de datos	R401, R400	V100	Shift Registers	SR400	GY400
Bits estado de etapas (D3-330P)	SO	GY200			

Comunicaciones desde un programa ladder

Típicamente las comunicaciones de red durarán más que 1 barrido de la CPU. El programa debe esperar que termine la transmisión de los datos en la comunicación antes de comenzar la próxima transacción.

El Puerto 2, que puede ser un maestro, tiene dos contactos de relevador especial asociados con el.

Uno indica " Puerto Ocupado " (SP116), y el otro indica "Puerto con error de comunicación" (SP117).

El ejemplo adyacente muestra el uso de estos contactos para una red con un maestro que sólo lee un aparato (RX). El bit de "Puerto ocupado" está ON mientras el PLC se comunica con el esclavo. Cuándo el bit está apagado el programa puede iniciar el próximo pedido de la red. El bit

este bit es opcional. Cuando se usa, debe ser adelante de cualquier instrucción de red ya que el bit de error es repone cuando se ejecuta una de las instrucciones RX o WX.

Enclavamientos múltiples para leer y escribir

Si usted usa varias instrucciones WX y RX en el programa ladder, usted tiene que enclavar las rutinas para asegurarse que todas las rutinas se ejecutan completas.

Si usted no usa el enclavamiento, entonces la CPU sólo ejecuta la primera rutina. Esto es porque cada puerto puede hacer sólo una transacción a la vez.

En el ejemplo a la derecha después que se ejecuta la instrucción RX, C100 se activa. Cuándo el puerto ha terminado la tarea de comunicación, la segunda rutina se ejecuta y C100 es desactiva.

Si usted usa programación de etapas RLL^{PLUS}, Ud. puede colocar cada rutina en una etapa separada del programa para asegurarse que la ejecución salte de etapa a etapa para permitir sólo que una de ellas sea activada.

"Puerto con error de comunicación" se activa cuando el PLC ha detectado un error. El uso de

Operación como maestro en una red (Usando instrucciones MRX y MWX)

Esta sección describe cómo el DL06 puede comunicarse en una red MODBUS RTU como un maestro usando las instrucciones MRX y MWX. Estas instrucciones permiten que usted entre direccionamiento nativo MODBUS en su programa de lógica ladder sin necesidad de realizar las conversiones octal a decimal. MODBUS es una sola red de un maestro y múltiples esclavos. El maestro es el único miembro de la red que puede iniciar peticiones en la red. Esta sección le enseña cómo diseñar la lógica requerida para la operación del maestro.

Códigos de función MODBUS posibles de usar

El código de función MODBUS determina si la tranferencia de datos es lectura o escritura y si se tiene acceso a un solo punto de referencia o a un grupo de ellas. El DL06 permite usar los códigos de función MODBUS descritos abajo.

Código de función MODBUS	Función	Tipos de datos en el DL06
01	Lea un grupo de bobinas	Y, CR, T, CT
02	Lea un grupo de entradas	X, SP
05	Active o desactive una bobina (solamente esclavo)	Y, CR, T, CT
15	Active o desactive un grupo de bobinas	Y, CR, T, CT
03, 04	Lea un valor desde uno o mas registros	V
06	Lea un valor desde solo un registro (sólo esclavo)	V
07	Lea un estado de excepción (Exception status)	V
08	Diagnósticos	V
16	Escriba un valor a un grupo de registros	V

Ejemplo de MRX/MWX en DirectSOFT

Vea un ejemplo en el capítulo 5, después de la instrucción MWX. El puerto 2 del DL06 tiene dos contactos de relevadores especiales asociados a él (véa el apéndice D para relevadores especiales). Uno indica el "puerto ocupado" (SP116) y el otro indica "Error de comunicación del puerto" (SP117).

El bit "puerto ocupado" está encendido mientras el PLC se comunica con el esclavo. Cuando el bit está OFF, el programa puede iniciar la petición siguiente de la red.

El bit "error del puerto" se hace ON cuando el PLC ha detectado un error; el uso de este bit es opcional. Cuando es usado, debe estar delante de cualquier bloque de instrucción de red puesto que se reajusta el bit del error cuando se ejecuta una instrucción MRX o MWX.

Las comunicaciones de red durarán típicamente más que un barrido de la CPU. El programa debe esperar que se termine la transferencia de datos antes de comenzar la transacción siguiente.

Enclavamientos múltiples de lectura y escritura

Si usted está utilizando lecturas y escrituras múltiples en el programa ladder, usted tiene que enclavar las rutinas para asegurarse de que todas las rutinas sean ejecutadas. Si usted no utiliza enclavamientos, entonces la CPU ejecutará solamente la primera rutina. Esto es porque cada puerto puede manejar solamente una transacción en un tiempo dado.

Ud. puede usar un contador para hacer el enclavamiento, o una instrucción shift register.

Si usted está utilizando la programación por etapas, usted puede poner cada rutina en una etapa separada del programa para asegurar la ejecución y la conmutación adecuadas de etapa a etapa permitiendo que solamente uno de ellos sea activo a la vez.

Lea más sobre estas instrucciones en el capítulo 5. Allí se muestra un ejemplo incluyendo enclavamiento entre instrucciones de modo que solamente una instrucción se ejecute en un momento dado, de la misma forma que son usadas las instrucciones RX y MX.

Operación con caracteres ASCII

Vea detalles de como establecer comunicación ASCII en el capítulo 5 y también en el apéndice K.